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Abstract

The construction and LHC phenomenology of the razor variables MR, an event-by-

event indicator of the heavy particle mass scale, and R, a dimensionless variable

related to the transverse momentum imbalance of events and missing transverse en-

ergy, are presented. The variables are used in the analysis of the first proton-proton

collisions dataset at CMS (35 pb−1) in a search for superpartners of the quarks and

gluons, targeting indirect hints of dark matter candidates in the context of supersym-

metric theoretical frameworks. The analysis produced the highest sensitivity results

for SUSY to date and extended the LHC reach far beyond the previous Tevatron re-

sults. A generalized inclusive search is subsequently presented for new heavy particle

pairs produced in
√
s = 7 TeV proton-proton collisions at the LHC using 4.7±0.1 fb−1

of integrated luminosity from the second LHC run of 2011. The selected events are

analyzed in the 2D razor -space of MR and R and the analysis is performed in 12 tiers

of all-hadronic, single and double leptonsfinal states in the presence and absence of

b-quarks, probing the third generation sector using the event heavy-flavor content.

The search is sensitive to generic supersymmetry models with minimal assumptions

about the superpartner decay chains. No excess is observed in the number or shape

of event yields relative to Standard Model predictions. Exclusion limits are derived

in the CMSSM framework with gluino masses up to 800 GeV and squark masses up

to 1.35 TeV excluded at 95% confidence level, depending on the model parameters.

The results are also interpreted for a collection of simplified models, in which gluinos

are excluded with masses as large as 1.1 TeV, for small neutralino masses, and the

first-two generation squarks, stops and sbottoms are excluded for masses up to about

800, 425 and 400 GeV, respectively.



v

With the discovery of a new boson by the CMS and ATLAS experiments in the γγ

and 4` final states, the identity of the putative Higgs candidate must be established

through the measurements of its properties. The spin and quantum numbers are

of particular importance, and we describe a method for measuring the JPC of this

particle using the observed signal events in the H → ZZ∗ → 4` channel developed

before the discovery. Adaptations of the razor kinematic variables are introduced

for the H → WW ∗ → 2`2ν channel, improving the resonance mass resolution and

increasing the discovery significance. The prospects for incorporating this channel in

an examination of the new boson JPC is discussed, with indications that this it could

provide complementary information to the H → ZZ∗ → 4` final state, particularly

for measuring CP-violation in these decays.
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Chapter 1

Introduction

It is often said that physics is the study of the world around us. Newtonian dynamics

describes the observed motion of the earth around the sun, thermodynamics how a

car engine operates. These are the physical laws that hold at the energy and length

scales we experience in everyday life. Their predictive power has allowed for the

development of contemporary civilization over centuries and eventually flight and

space travel. They also include symmetries that have shaped our aesthetic tastes for

physical theories. These laws are invariant over time and space, there is not preferred

direction to the universe, and classical fields communicate the forces between matter.

But there is physics that describe worlds very much unlike the one we experience,

which exist at a different scale.

Just as Galilean invariance has given way to Lorentz invariance and finally Ein-

stein’s general relativity, we have seen that the laws of physics change at extreme

speeds and energy densities. Matter can approach the speed of light but never reach

it, a contemporary analogue of Zeno’s paradox. The molecule, atom, and nucleus

have all been split open to reveal a quantum world with its own laws and forces.

This is the world that elementary particle physics describes. The primary difficulty

in studying it is its removal from our own.

The particle/wave duality of light and matter indicates that size and energy go in-

versely; in order to probe increasing smaller length scales, one must use ever-increasing

energies. In some sense, it is as simple as E = mc2. In order to produce new, massive

particles that interact at these small length scale we must produce interactions at a
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commensurate energy scale. With the exceptions of electrons and protons, the first

elementary particles discovered at the beginning of the 20th century came from cos-

mic rays. This source of high-energy particles has since been superseded by terrestrial

particle accelerators in laboratories of increasing size and energy. The first of these

involved shooting high-energy particles at fixed targets, in the model of the earliest

experiments probing atomic structure through scattering. In the Newtonian world

this would be sufficient, but special relativity indicates this is not the optimal way

for converting the energy of relativistic particles into new matter through interac-

tions. The advent of colliding beams particles, first electrons/positrons followed by

proton/proton and proton/antiproton, has improved this efficiency substantially.

Similarly, the technology with which physicists study these high-energy particles

has evolved with their energies. The photographic emulsion plates that captured

the interactions of the cosmic rays have given way to cloud chambers, then bubble

chambers, and now whole detectors made of millions of silicon microstrips, taking our

ability to visualize the trajectories of charged particles from analogue to digital. Fixed

target detectors have evolved into instruments with nearly 4π geometrical coverage

around the interaction point of colliding beams. Never before have we been able to

so efficiently control so much energy in so little space and so completely reconstruct

the interactions of the quantum world.

Of course, our understanding of elementary particles has grown with our access

to them. With increasing numbers of particles discovered, we have been able to piece

together the structure of the quantum world. The discovery of the anti-electron estab-

lished that the symmetry of Dirac’s equations had physical significance [1]. Particle-

puzzle-pieces of mesons and baryons appearing from the sky were assembled into

the Eightfold Way [2] and finally QCD [3, 4]. The quark model was confirmed once

energies were achieved that could resolve the lumpiness of the proton, with quark

and gluons jets following from energies large enough to overcome the strong force.

And with this structure has come new symmetries, absolute, approximate and bro-

ken. The Standard Model (SM) [5, 6] of particle physics developed to explain these

high-energy interactions has proved to be extremely successful, and for the last 50
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years has survived myriad experimental tests, predicting the existence of the W , Z,

and top before their discoveries. But this is not the end of the story. Just as the laws

of physics have evolved from one energy scale to another, they could change again as

we enter a new world at the TeV frontier.

This thesis concerns this frontier of elementary particle physics, opened through

the highest energy particle collider ever realized, the Large Hadron Collider (LHC)

and the Compact Muon Solenoid (CMS) experiment which is build to study these

proton-proton collisions. It is composed of two parts: The first describes the Standard

Model of particle physics and the CMS detector, and studies of the known elemen-

tary particles at previously unreachable energies. Chapter 2 gives an introduction to

the particle content of the Standard Model, along with overviews of CMS and the

LHC machine. This is followed by chapters explaining each of the subcomponents of

the CMS detector, and how they are used to measure the properties of elementary

particles. Chapter 3 describes the CMS tracking and muon detectors and how, com-

bined with the CMS magnetic field, their measurements are used to reconstruct the

trajectories and momenta of charged particles. The design and operation of the elec-

tromagnetic and hadronic calorimeters are explained in chapters 4 and 5, respectively,

along with the reconstruction of electrons, photons and QCD jets. Chapter 6 talks

about the physics of W and Z bosons, and how they can be used to both calibrate

the detector and study the SM. Finally, part one concludes with a discussion of the

Higgs boson. The CMS and ATLAS experiments recently announced the discovery

of a new boson which could be the Higgs [7,8]. Chapter 7 explains how we can prove

that it is the Higgs through measurements of its quantum numbers, with estimates

of how long remains before we can conclude that the SM is complete.

Part II of this thesis is about what might be waiting beyond the SM. In chapter 8,

the shortcomings of the SM are explained, along with motivations for expecting evi-

dence of new, heavy degrees of freedom not included in the SM to appear at the LHC.

The phenomenology of the theories describing this beyond the SM (BSM) physics is

explained and used to motivate the development of the razor kinematic variables

which can be used to search for this new physics. The derivation of these variables
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is explained in chapters 9 and 10, along with the details of searches for BSM physics

using 35 pb−1 and 4.7 fb−1 of
√
s = 7 TeV CMS data, respectively. Null results are

interpreted in the context of models of supersymmetry, with constraints placed on its

hypothetical parameters. The phenomenology of the 2D razor-space is described in

detail, for both hypothetical signal events and SM backgrounds. Finally, chapter 11

describes new kinematic variables designed for future searches at the LHC which can

improve our resolution of the scale of new physics and perhaps uncover the symmetries

that govern BSM phenomena.
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Part I

CMS and the Standard Model
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Chapter 2

CMS and Fundamental Particles

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics describes the interactions of all of the

known elementary particles. The are the fermions, the spin 1/2 matter that makes up

our universe, and the particle mediators of the forces which act on these fermions, the

spin 1 bosons. The fermions are composed of two groups, leptons and quarks, each

with three families of increasing mass and each particle with a corresponding antipar-

ticle. The force carriers (photons, W/Z bosons, gluons) transmit the electromagnetic,

weak and strong forces, respectively.

Each of the fermions carries an electric charge. The leptons (electrons, muons,

taus) all have charge 1, which is defined by convention to be −1 for leptons and 1

for anti-leptons. The quarks have fractional charges, with quarks coming in an up

and down type for each family, with charges 2/3 and −1/3, respectively. For each

lepton family there is also a neutrino which is neutral and approximately massless.

The charged Dirac fermions and their electromagnetic interactions can be described

by quantum electrodynamics (QED) [9]. This theory, and the full SM, are gauge

theories based on symmetry groups and the requirement of local gauge invariance.

Electromagnetism is based on the U(1)em symmetry group, meaning that its laws

are invariant under complex phases applied to particle fields. Local gauge invari-

ance further requires that the theory be invariant under space-time-dependent phase

changes, requiring that the theory is continuously invariant under gauge transforma-
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tions. In going from a global symmetry to a local one, the charged particles require

a force to communicate between different points in space-time in order to ensure

that the gauge symmetry is not broken. Hence “gauge-ing” U(1)em, or requiring

that the Lagrangian is invariant under these continuous transformations, introduces

a massless spin 1 gauge boson, the photon, which communicates the electromagnetic

force between charged particles. QED, like all the gauge symmetries of the SM, is

a renormalizable theory meaning that it is free from divergences resulting from loop

Feynman diagrams contributing to particles’ self-energies. The physical consequence

is that the QED interaction-strength coupling, αem, effectively changes as a function

energy, running with the scale of the interaction.

In addition to electromagnetism, the quarks also interact through the strong force,

which is described by a gauge theory based on the SU(3)C group, called quantum

chromodynamics (QCD) [3, 4]. In addition to electric charge, the quarks also carry

a color charge, corresponding to one of three colors. The requirement of local gauge

invariance introduces eight massless gauge bosons, the gluons, which communicate

the strong force. Unlike the photon, these gluons also carry color charge, with two

separate color indices which allow the quarks of different colors to interact through its

exchange. The running of the strong force coupling, αs, through renormalization of

QCD is quite different from the QED coupling due to the different group structure and

corresponding form factors. This has profound consequences on the phenomenology

of colored particles. QCD has the property of asymptotic freedom, implying that the

strong force actual weakens between particles at higher energies large. Unlike the

electromagnetic force which diminishes with distance, the strong force increases on

short distance scales. Colored particle also exhibit a phenomena called confinement,

whereby they can not be isolated singularly or detected directly. The result is that

as two quarks pull apart from each other, the gluon fields form narrow tubes of color

charge, pulling them together like a rubber band. If there is enough energy to pull the

quarks apart, like in LHC collisions of protons, at some point it becomes energetically

favorable for a new quark/anti-quark pair to appear from the vacuum along the color

tube. For very energetic colored particles, this process will repeat recursively, leading
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to a of jet color-neutral baryons and meson flying in the directions of the initial colored

particle. Asymptotic freedom also implies that at small scales the size of baryons and

mesons the individual quarks behave as free particles. At LHC collision energies, the

quarks and gluons of colliding protons interact directly, as if they were free partons.

In the SM, the interactions between the particles are described by a non-Abelian

Yang-Mills type gauge theory based on the group SU(3)C × SU(2)L × U(1)Y , where

SU(3)C is QCD. The SM particles can be organized according to their representations

in the SU(2)L subgroup. The chiral-left component of the lepton and neutrino (which

are all left-handed, as far as we know) form an SU(2)L doublet, while the chiral-right

leptons are each in their own singlet. Similarly, the chiral-left components of each

family’s up and down type quarks are a SU(2)L doublet, while the chiral-right quarks

are each singlets. Gauge-ing SU(2)L × U(1)Y results in a collection of massless spin

1 gauge bosons. The force carriers of the weak force, the W± and Z bosons, do

have mass, which they acquire through spontaneous electroweak symmetry breaking

(EWSB) [10–15]. This is accomplished through the addition of a complex SU(2)L

doublet of spin zero fields, the Higgs field, to the theory. The Higgs acquires a

nonzero vacuum expectation value (VEV) from its quadratic potential which breaks

the SU(2)L × U(1)Y , or electroweak symmetry. It is denoted such because it is a

unified description of the weak and electromagnetic forces, which are only bifurcated

by the breaking of a global symmetry from EWSB. The VEV is left invariant by once

combination of SU(2)L × U(1)Y generators, which gives U(1)em electromagnetism.

On the other hand, the other gauge bosons associated with SU(2)L × U(1)Y eat the

degrees of freedom associated with the Higgs doublet, giving masses to the spin 1

weak bosons through the addition of a longitudinal degree of freedom. These are, in

turn, linear combinations of the broken SU(2)L × U(1)Y generators’ gauge bosons.

Only one neutral scalar of the Higgs doublet is left, which is associated with the Higgs

boson. This same boson gives the fermions their masses through Yukawa couplings

which realize fermion mass terms in the Lagrangian when the Higgs acquires a VEV.
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2.2 The CMS Experiment

The Compact Muon Solenoid (CMS) [16] is a multipurpose detector which surrounds

one of the LHC interaction points. In these high energy proton-proton collisions,

sprays of particles will fly out of the point of interaction. With a collection of dedicated

subdetectors, CMS is able to measure the properties of these particles, reconstruct

their identities and trajectories, and interpret the particles and interactions contained

in the event. CMS is shown in figure 2.1.

2008 JINST 3 S08004

C ompac t Muon S olenoid

Pixel Detector

Silicon Tracker

Very-forward
Calorimeter

Electromagnetic
Calorimeter

Hadron
Calorimeter

Preshower

Muon
Detectors

Superconducting Solenoid

Figure 1.1: A perspective view of the CMS detector.

to measure precisely the momentum of high-energy charged particles. This forces a choice of
superconducting technology for the magnets.

The overall layout of CMS [1] is shown in figure 1.1. At the heart of CMS sits a 13-m-
long, 6-m-inner-diameter, 4-T superconducting solenoid providing a large bending power (12 Tm)
before the muon bending angle is measured by the muon system. The return field is large enough
to saturate 1.5 m of iron, allowing 4 muon stations to be integrated to ensure robustness and full
geometric coverage. Each muon station consists of several layers of aluminium drift tubes (DT)
in the barrel region and cathode strip chambers (CSC) in the endcap region, complemented by
resistive plate chambers (RPC).

The bore of the magnet coil is large enough to accommodate the inner tracker and the
calorimetry inside. The tracking volume is given by a cylinder of 5.8-m length and 2.6-m di-
ameter. In order to deal with high track multiplicities, CMS employs 10 layers of silicon microstrip
detectors, which provide the required granularity and precision. In addition, 3 layers of silicon
pixel detectors are placed close to the interaction region to improve the measurement of the impact
parameter of charged-particle tracks, as well as the position of secondary vertices. The expected
muon momentum resolution using only the muon system, using only the inner tracker, and using
both sub-detectors is shown in figure 1.2.

The electromagnetic calorimeter (ECAL) uses lead tungstate (PbWO4) crystals with cov-
erage in pseudorapidity up to |η | < 3.0. The scintillation light is detected by silicon avalanche
photodiodes (APDs) in the barrel region and vacuum phototriodes (VPTs) in the endcap region. A
preshower system is installed in front of the endcap ECAL for π0 rejection. The energy resolution

– 3 –

Figure 2.1: Illustration of the CMS detector

The design of CMS is based around the superconducting 4 T solenoidal mag-

net, which is centered on the beam pipe symmetrically around the interaction point.

Charged particles traversing this field will bend as they travel out from the inter-

action point, and the large field is required to measure their momentum precisely.

Inside and around the magnet are layers of subdetectors, each designed to detect

and measure specific types of particles. The cylindrical shape of the magnet informs

the geometries of these subdetectors; each includes a barrel component arranged in

layers of fixed radius from the beam pipe while endcap components are placed in
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layers perpendicular to the beam line, covering each end of the experiment. This

enclosed geometry yields almost 4π angular coverage for observing all of the particles

produced in interactions, with small holes through which the beams pass. The CMS

coordinate system has the origin centered at the nominal interaction point, with the

y-axis pointing vertically upward, the x-axis pointing radially inward toward to the

LHC center, and the z axis points along the beam line. φ is measured from the x-axis

in the x-y plane, transverse to the beam line, while the polar angle θ is measured

from the z-axis. For convenience, pseudorapidity is defined as η = log [tan θ/2] and

is equivalent to the rapidity of a massless particle traveling from the origin of CMS.

Each layer of the CMS detector is built to measure a different type of particle.

At the innermost part of CMS, inside the solenoidal magnet barrel, lies the silicon

pixel tracker, which in turn is surrounded by a silicon strip tracker. These subde-

tectors are used to reconstruct the trajectories of charged particles traveling through

the CMS tracker volume. The large magnetic field combined with the fine spatial

resolution of the tracker results in excellent track reconstruction performance. The

inner tracker is surrounded by an electromagnetic calorimeter, composed of scin-

tillating lead tungstate crystals. This detector is used to precisely reconstruct the

energies of photons and electrons and to identify them through their electromagnetic

showers. Outside of the electromagnetic calorimeter is a hadron calorimeter, made

of interleaved layers of brass absorber and plastic scintillator. This dense sampling

calorimeter is needed to stop the jets of hadrons which are produced in each colli-

sion from flying through the detector, measuring their energy in the process. Finally,

outside of the barrel magnet sit muon detectors, which can measure the trajectories

of muons as they pass through gaseous ionization chambers. With the combined in-

formation of each subdetector layer, events can be precisely reconstructed. In total,

CMS has hadron calorimeters covering the region |η| < 5, electromagnet calorimeter

crystals to |η| < 3 and muon and tracking coverage extending to |η| < 2.4. The

partons which interact in LHC collisions only carry a fraction of the protons momen-

tum, samples from its parton density function (PDF). As a result, LHC collisions can

have large longitudinal momentum imbalances along the beam line. In the transverse
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plane, momentum is approximately conserved, meaning that the large calorimeter

pseudorapidity coverage is essential in measuring the energy of all of the high en-

ergy particles in the collision in order to infer the transverse momenta of any weakly

interacting particles.

While designed with the optimized reconstruction of particles in mind, each sub-

detector must also satisfy the extreme running conditions of the LHC environment.

Each detector is made of radiation-hard components that can withstand the enor-

mous particle flux from collisions. The crystals of the electromagnetic calorimeter

must be monitored in real time for radiation-induced transparency changes while the

photodetector technology used in each of the calorimeters changes with increasing

pseudorapidity in order to withstand more radiation. Similarly, the muon chamber

technology is chosen according to the expected muon flux and local magnetic field.

In the following chapters each of these subdetectors is described in detail.

2.3 The Large Hadron Collider

The Large Hadron Collider (LHC) [17] is a two-ring superconducting hadron collider.

It is installed in the 27 km LEP tunnel at CERN, in Geneva, Switzerland, and at

its design performance will provide 14 TeV collisions between 7+7 TeV protons with

an instantaneous luminosity of L = 1034 cm−1s−1. At present, the LHC machine has

achieved 8 TeV collisions and a luminosity exceeding 5× 1033 cm−1s−1. The protons

are supplied to the LHC through an injector chain of smaller accelerators. Linear

accelerators (LINACS) feed protons into the Proton Synchrotron Booster (PSB),

followed by the Proton Synchrotron (PS) which accelerates them to 25 GeV. This is

followed by the Super Proton Synchrotron (SPS), bringing protons to 450 GeV, and

finally to the LHC, as illustrated in figure 2.2.

The design of the LHC reflects a balance between the desired performance and

restrictions from both its location and cost. With the LEP tunnel as a location,

the maximum beam energy is limited by the superconducting magnet strength. Fur-

thermore, the desired collision energy precludes electron beams because of large syn-
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Figure 2.2: Diagram of LHC proton injection chain.

chrotron radiation. The machine luminosity can be written as

L =
N2
b nbfrevγr
4πεnβ∗

F , (2.1)

where Nb is the number of particles per bunch, nb the number of bunches per beam,

frev the revolution frequency, γr the relativistic gamma factor, εn the normalized

transverse beam emittance, β∗ the beta function at the collision point, and F a geo-

metric factor to a small nonzero crossing angle of the beams at the interaction point.

The strong luminosity dependence on Nb implies that a proton/antiproton collider

concept cannot be used, as at the Tevatron, because of the difficulty in achieving the

necessary antiproton beam intensity. Hence, the LHC is chosen to be a proton/proton

colliding machine. Each beam then requires a magnetic field pointing in an opposite

direction in order to push it around the LHC ring. Due to cost restrictions, and the

size of the LEP tunnel a “two-in-one” design was chosen for the LHC, where both

proton beams are contained in the same beam pipe, cryostat and field. The primary

magnets are then dipoles, with the twin-bore design illustrated in figure 2.3.
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Figure 2.3: Illustration of twin-bore LHC dipole magnet. Each of the counterrotating
proton beams are contained within the same cryostat.

The full LHC ring is composed of 1,232 dipole magnets, each with NbTi supercon-

ductors cooled by superfluid helium to a temperature below 2 K and able to operate

at fields above 8 T. They must all have practically identical characteristics in order

to ensure successful operation, with variations in the field shape and strength not

exceeding approximately 10−4 during operation.
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Chapter 3

Charged Particles and the CMS
Detector

3.1 The CMS Solenoidal Magnet

The excellent momentum resolution when measuring charged particles with the silicon

tracker, described in section 3.2, is possible because of the enormous field strength

of the CMS superconducting magnet [18–21]. It is designed to reach a 4 T field in

the cylindrical free bore of 6 m diameter and 12.5 m length, where the silicon tracker

and barrel calorimeters are placed, and has achieved 3.8 T for in situ operation. An

illustration of the CMS magnetic is shown in figure 3.1, along with a picture of the

steel support yoke.
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Figure 2.1: General artistic view of the 5 modules composing the cold mass inside the cryostat,
with details of the supporting system (vertical, radial and longitudinal tie rods).

magnetic pressure (P =
B2

0
2µ0

= 6.4 MPa), the elastic modulus of the material (mainly aluminium
with Y = 80 GPa) and the structural thickness (∆Rs = 170 mm i.e., about half of the total cold
mass thickness), according to PR

∆Rs
= Y ε , giving ε = 1.5× 10−3. This value is high compared to

the strain of previous existing detector magnets. This can be better viewed looking at a more
significant figure of merit, i.e. the E/M ratio directly proportional to the mechanical hoop strain
according to E

M = PR
2∆Rsδ

∆Rs
∆R = ∆Rs

∆R
Y ε
2δ , where δ is the mass density. Figure 2.3 shows the values of

E/M as function of stored energy for several detector magnets. The CMS coil is distinguishably
far from other detector magnets when combining stored energy and E/M ratio (i.e. mechanical
deformation). In order to provide the necessary hoop strength, a large fraction of the CMS coil
must have a structural function. To limit the shear stress level inside the winding and prevent
cracking the insulation, especially at the border defined by the winding and the external mandrel,
the structural material cannot be too far from the current-carrying elements (the turns). On the basis
of these considerations, the innovative design of the CMS magnet uses a self-supporting conductor,
by including in it the structural material. The magnetic hoop stress (130 MPa) is shared between
the layers (70%) and the support cylindrical mandrel (30%) rather than being taken by the outer
mandrel only, as was the case in the previous generation of thin detector solenoids. A cross section
of the cold mass is shown in figure 2.4.

The construction of a winding using a reinforced conductor required technological develop-
ments for both the conductor [11] and the winding. In particular, for the winding many problems
had to be faced mainly related to the mandrel construction [12], the winding method [13], and the
module-to-module mechanical coupling. The modular concept of the cold mass had to face the
problem of the module-to-module mechanical connection. These interfaces (figure 2.5) are critical

– 7 –
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Figure 2.6: A view of the yoke at an early stage of magnet assembly at SX5. The central barrel
supports the vacuum chamber of the superconducting coil. At the rear, one of the closing end cap
disks is visible.

2.2.2 Yoke

The yoke (figure 2.6) is composed of 11 large elements, 6 endcap disks, and 5 barrel wheels,
whose weight goes from 400 t for the lightest up to 1920 t for the central wheel, which includes
the coil and its cryostat. The easy relative movement of these elements facilitates the assembly
of the sub-detectors. To displace each element a combination of heavy-duty air pads plus grease
pads has been chosen. This choice makes the system insensitive to metallic dust on the floor and
allows transverse displacements. Two kinds of heavy-duty high-pressure air pads with a capacity
of either 250 t (40 bars) or 385 t (60 bars) are used. This is not favourable for the final approach
when closing the detector, especially for the YE1 endcap that is protruding into the vacuum tank.
A special solution has been adopted: for the last 100 mm of approach, flat grease-pads (working
pressure 100 bar) have been developed in order to facilitate the final closing of the detector. Once
they touch the axially-installed z-stops, each element is pre-stressed with 100 t to the adjacent
element. This assures good contact before switching on the magnet. In the cavern the elements
will be moved on the 1.23% inclined floor by a strand jacking hydraulic system that ensures safe
operation for uphill pulling as well as for downhill pushing by keeping a retaining force. The
maximum movements possible in the cavern are of the order of 11 meters; this will take one hour.

To easily align the yoke elements, a precise reference system of about 70 points was installed
in the surface assembly hall. The origin of the reference system is the geometrical center of the
coil. The points were made after loading the coil cryostat with the inner detectors, the hadronic
barrel in particular which weights 1000 t. A mark on the floor was made showing the position of
each foot in order to pre-position each element within a ± 5 mm tolerance. Finally, all the elements
were aligned with an accuracy of 2 mm with respect to the ideal axis of the coil.

– 11 –

Figure 3.1: (Left) Artist’s rendition of magnet cryostat, with view of five models
composing the cold mass. (Right) Steel magnet support yokes.
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A number of new features, relative to previous magnets for particle physics appli-

cations, are introduced in order to achieve the strength and size of the CMS magnet.

Due to the number of ampere-turns required to generate the field (4.2×107 amp/turn)

the winding is composed of four layers of NdTi conductors, as opposed to the usual

one. The flux is returned through the 10K t steel yoke, which consists of 5 barrel

wheels and two endcaps. Despite the conductor being mechanically reinforced with

an aluminum alloy the large ratio between stored energy (2.6 GJ) and cold mass

(220 t) causes large mechanical deformations during the energizing of the magnet, of

order 0.15%. This stored-energy-to-mass ratio, E/M = 11.6, distinguishes the CMS

magnet from other detector magnets, as shown in figure 3.2.
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Figure 2.2: The cold mass mounted vertically before integration with thermal shields and insertion
in the vacuum chamber.

Figure 2.3: The energy-over-mass ratio E/M, for several detector magnets.

– 9 –

Figure 3.2: (Left) Energy-over-mass ratio E/M for a collection of particle-physics
detector magnets. (Right) Steel yoke during early stage of assembly. The 5 barrel
wheels support the vacuum chamber of the superconducting coil while one of two
endcaps is visible at the back.

The magnitude and field direction of the CMS magnet are illustrated in figure 3.3.

The return field is large enough to saturate 1.5 m of iron, meaning that dedicated

muon detectors can be placed outside the iron yoke and calorimeters, giving full

geometric coverage. The strength and uniformity of the magnetic field in the regions of

these muon detectors inform the choice of technology used, as described in section 3.4.
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Figure 3.3: Diagram of the magnetic field throughout a longitudinal section of the
CMS experiment. (Left) Color z-scale indicates the value of |B|. (Right) Field lines
in and outside of the iron yoke, with each representing a magnetic flux increment of
6 Wb. [27].
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3.2 The CMS Tracker

The design of the CMS tracker is motivated by both the required physics performance

and the instantaneous LHC running conditions. Charged particles emerging from

collisions must be measured efficiently and precisely as they move through the 4 T

magnetic field which covers the full tracker volume. At LHC design luminosity [22]

there are expected to be about 1000 particles coming from upwards of 20 overlapping

pp interactions, occurring every 25 ns, with the extreme particle flux resulting in a

high radiation environment. The tracker must be able to distinguish each of these

tracks, measure their trajectory and the interaction primary vertices they come from,

and do so quickly in order to correctly identify the bunch crossing while maintaining

radiation resistant.

The CMS tracker [16], shown in figure 3.6, represents a balance of these con-

siderations with the corresponding material budget from on-detector electronics and

cooling. It consists of two main detectors: a silicon pixel detector, covering the region

from 4 to 15 cm in radius (which will have the highest hit-density rate), and 49 cm on

either side of the collision point along the LHC beam axis, and a silicon strip detector,

covering the region from 25 to 110 cm in radius and within 280 cm on either side of

the collision point along the beam axis. With a total of about 200 m2 of active silicon

area the CMS tracker is the largest ever built [23,24].

3.2.1 Silicon Pixel Detector

The CMS silicon pixel detector includes about 66 million active elements which in-

strument a surface area of approximately 1 m2. It is designed to provide at least

three high-precision hits for each track. This accomplished through three concentric

cylindrical barrel layers at average radii 4.3, 7.3 and 10.2 cm, respectively, and four

fan-blade covers for the endcaps, 35.5 and 48.5 cm from the interaction point. The

geometry of the pixel detector is illustrated in figure 3.5. The barrel layers have an

active length of 53 cm which, along with the endcaps, provides three-hit coverage up

to |η| < 2.2, with two-hit coverage to |η| < 2.5.
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Figure 3.4: r-z slice of the CMS Tracker. (Top) Diagram of tracker with strip lay-
ers and sub-detectors. Double lines indicate overlapping strips for stereo readout.
(Bottom) Three-dimensional visualization of the tracker.

The active elements are n-in-n 100µm×150µm pixels [16], which achieve a spatial

resolution between 15 and 20 µm and with occupancy below 1% with expected particle

fluxes. These pixels are oriented with the smaller pitch in the azimuthal direction

in the barrel and the radial direction in the disks. The resolution in the azimuthal

direction is enhanced by significant Lorentz drift of the collected electrons resulting

from the 3.8 T magnetic field, which leads to charge sharing in that direction and

therefore improves the resolution. The endcaps benefit from both azimuthal and

radial charge sharing through a 20 degree rotation of the disks about their radial axes

with respect to the disk planes.



19

2008 JINST 3 S08004
E

ffi
ci

en
cy

  (
 z

 2
H

its
 )

Pseudorapidity !

R
ad

iu
s

Figure 3.6: Geometrical layout of the pixel detector and hit coverage as a function of
pseudorapidity.

size of 100×150 µm2 emphasis has been put on achieving similar track resolution in both r-φ and
z directions. Through this a 3D vertex reconstruction in space is possible, which will be important
for secondary vertices with low track multiplicity. The pixel system has a zero-suppressed read
out scheme with analog pulse height read-out. This improves the position resolution due to charge
sharing and helps to separate signal and noise hits as well as to identify large hit clusters from
overlapping tracks.

The pixel detector covers a pseudorapidity range −2.5< η <2.5, matching the acceptance
of the central tracker. The pixel detector is essential for the reconstruction of secondary vertices
from b and tau decays, and forming seed tracks for the outer track reconstruction and high level
triggering. It consists of three barrel layers (BPix) with two endcap disks (FPix). The 53-cm-long
BPix layers will be located at mean radii of 4.4, 7.3 and 10.2 cm. The FPix disks extending from
≈6 to 15 cm in radius, will be placed on each side at z=±34.5 and z=±46.5 cm. BPix (FPix)
contain 48 million (18 million) pixels covering a total area of 0.78 (0.28) m2. The arrangement
of the 3 barrel layers and the forward pixel disks on each side gives 3 tracking points over almost
the full η-range. Figure 3.6 shows the geometric arrangement and the hit coverage as a function
of pseudorapidity η . In the high η region the 2 disk points are combined with the lowest possible
radius point from the 4.4 cm barrel layer.

The vicinity to the interaction region also implies a very high track rate and particle fluences
that require a radiation tolerant design. For the sensor this led to an n+ pixel on n-substrate detector
design that allows partial depleted operation even at very high particle fluences. For the barrel
layers the drift of the electrons to the collecting pixel implant is perpendicular to the 4 T magnetic
field of CMS. The resulting Lorentz drift leads to charge spreading of the collected signal charge
over more than one pixel. With the analog pulse height being read out a charge interpolation allows

– 34 –
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Figure 3.6: Geometrical layout of the pixel detector and hit coverage as a function of
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size of 100×150 µm2 emphasis has been put on achieving similar track resolution in both r-φ and
z directions. Through this a 3D vertex reconstruction in space is possible, which will be important
for secondary vertices with low track multiplicity. The pixel system has a zero-suppressed read
out scheme with analog pulse height read-out. This improves the position resolution due to charge
sharing and helps to separate signal and noise hits as well as to identify large hit clusters from
overlapping tracks.

The pixel detector covers a pseudorapidity range −2.5< η <2.5, matching the acceptance
of the central tracker. The pixel detector is essential for the reconstruction of secondary vertices
from b and tau decays, and forming seed tracks for the outer track reconstruction and high level
triggering. It consists of three barrel layers (BPix) with two endcap disks (FPix). The 53-cm-long
BPix layers will be located at mean radii of 4.4, 7.3 and 10.2 cm. The FPix disks extending from
≈6 to 15 cm in radius, will be placed on each side at z=±34.5 and z=±46.5 cm. BPix (FPix)
contain 48 million (18 million) pixels covering a total area of 0.78 (0.28) m2. The arrangement
of the 3 barrel layers and the forward pixel disks on each side gives 3 tracking points over almost
the full η-range. Figure 3.6 shows the geometric arrangement and the hit coverage as a function
of pseudorapidity η . In the high η region the 2 disk points are combined with the lowest possible
radius point from the 4.4 cm barrel layer.

The vicinity to the interaction region also implies a very high track rate and particle fluences
that require a radiation tolerant design. For the sensor this led to an n+ pixel on n-substrate detector
design that allows partial depleted operation even at very high particle fluences. For the barrel
layers the drift of the electrons to the collecting pixel implant is perpendicular to the 4 T magnetic
field of CMS. The resulting Lorentz drift leads to charge spreading of the collected signal charge
over more than one pixel. With the analog pulse height being read out a charge interpolation allows
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Figure 3.5: (Left) Geometrical layout of the pixel detector. (Right) Pixel hit coverage
as a function of pseudorapidity.

3.2.2 Silicon Strip Detector

The CMS silicon strip detector has 9.3 million active elements covering an active

surface area of 198 m2. The detector is composed of three distinct subsystems: The

Tracker Inner Barrel and Disks (TIB/TID), the Tracker Outer Barrel (TOB) and the

Tracker EndCaps (TEC).

The pitches of each of the tracker layers follows from the expected particle flux,

with 10 cm x 80µm cells in the TIB layers (20 cm < r < 55 cm) to a pitch as large as

183µm in the TOB, with an occupancy of around 2%/3% per strip. At larger radii,

the strip length must be increased in order to accommodate additional channels. The

strip capacitance scales with its length, resulting in the magnitude of electronics noise

scaling linearly with increased size. In order to maintain a signal-to-noise ratio well

above 10, two different thicknesses of silicon micro-strip sensors are used with widths

320 and 500µm, respectively. The thicker strips have correspondingly larger signal

and are used at larger radii.

The TIB and TID extend in radius to 55 cm and are composed of four barrel

layers, supplemented by three disks at each end, of 320µm thick silicon microstrip

sensors. This subdetector provides up to four r-φ measurements on a track, with the

strips oriented parallel to the beam axis in the barrel and radially in the disks. The

strip pitch is 80µm in the inner pair of TIB layers and 120µm in the outer pair of

TIB layers, while in the TID, the mean pitch varies between 100 and 141µm. This

results in single point resolutions ranging between 23 and 35 µm.
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Outside the TIB/TID is the TOB, with an outer radius of 116 cm. It consists of

six barrel layers of 500µm thick microstrip sensors with strip pitches of 183µm in

the first four layers and 122µm in the last pair of layers, extending to ±118 cm in z,

which give 53 and 35 µm single point resolutions.

On either side of the beam line from the inner and outer barrel trackers are the

two TEC trackers, which cover 124 < |z| < 280 cm and 22.0 < r < 113.5 cm. Each one

is comprised of nine disks, which are in turn made of up to seven rings of radial-strip

silicon detectors. The sensor thicknesses are 320µm in the inner four rings, increasing

to 500µm in the outer three. The average radial strip pitch varies from 97 to 184µm.

For the inner two layers of the TIB and TOB, the inner two rings of the TID and

TEC and the fifth ring of the TEC a second microstrip detector module is included

which is mounted flat to the first with a stereo angle of 100 mrad. These second

strips enables a measurement of the orthogonal coordinate (z in the barrel and r on

the disks) with a single point resolution of 230 and 530 µm in the TIB and TOB,

respectively.

With all the planes running efficiently the silicon tracker provides between 8 to

14 high precision measurements of track impact points up to |η| < 2.4, not counting

stereo modules. The expected number of tracker hits and material budget, as a

function of pseudorapidity, are shown in figure 3.6.

3.3 Track and Vertex Reconstruction

3.3.1 Track Reconstruction

Track reconstruction in CMS consists of combining the hits in the various tracking

layers, three-dimensional points which indicate the path the took through the detec-

tor, into a reconstructed trajectory of the particle. This is accomplished through an

iterative procedure in which track seeds are used to grow trajectories by searching for

compatible hits, repeating to construct additional tracks.

The track reconstruction algorithm first requires and estimate of the proton-proton
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Figure 3.2: Number of measurement points in the strip tracker as a function of pseudorapidity η .
Filled circles show the total number (back-to-back modules count as one) while open squares show
the number of stereo layers.
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Figure 3.3: Material budget in units of radiation length as a function of pseudorapidity η for the
different sub-detectors (left panel) and broken down into the functional contributions (right panel).

30% of the transverse momentum resolution while at lower momentum it is dominated by multiple
scattering. The transverse impact parameter resolution reaches 10 µm for high pT tracks, domi-
nated by the resolution of the first pixel hit, while at lower momentum it is degraded by multiple
scattering (similarly for the longitudinal impact parameter). Figure 3.5 shows the expected track
reconstruction efficiency of the CMS tracker for single muons and pions as a function of pseudo-
rapidity. For muons, the efficiency is about 99% over most of the acceptance. For |η | ≈ 0 the effi-
ciency decreases slightly due to gaps between the ladders of the pixel detector at z ≈ 0. At high η
the efficiency drop is mainly due to the reduced coverage by the pixel forward disks. For pions and
hadrons in general the efficiency is lower because of interactions with the material in the tracker.
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different sub-detectors (left panel) and broken down into the functional contributions (right panel).

30% of the transverse momentum resolution while at lower momentum it is dominated by multiple
scattering. The transverse impact parameter resolution reaches 10 µm for high pT tracks, domi-
nated by the resolution of the first pixel hit, while at lower momentum it is degraded by multiple
scattering (similarly for the longitudinal impact parameter). Figure 3.5 shows the expected track
reconstruction efficiency of the CMS tracker for single muons and pions as a function of pseudo-
rapidity. For muons, the efficiency is about 99% over most of the acceptance. For |η | ≈ 0 the effi-
ciency decreases slightly due to gaps between the ladders of the pixel detector at z ≈ 0. At high η
the efficiency drop is mainly due to the reduced coverage by the pixel forward disks. For pions and
hadrons in general the efficiency is lower because of interactions with the material in the tracker.
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Figure 3.6: (Left) Number of measurement points in the strip tracker as a function of
pseudorapidity. Open squares indicate the number of stereo layers while filled circles
correspond to all layers. (Right) Material budget of different tracker subdetectors in
units of radiation lengths.

interaction region, or beam spot. In the reconstruction algorithm, the transverse

location of the beam spot is used as an initial estimate for the primary interaction

point. The beam spot is measured over many tracks and events through an iterative

χ2 fit which exploits the correlation between the transverse impact parameter (dxy)

and the angle of the track at the point of closest approach (φ0). Fill-to-fill variations

of the beam spot are found to be at the level of ∼0.5 mm in x and y, and ∼2 cm in

z [25].

CMS track reconstruction proceeds according to the combinatorial track-finder

(CFT) algorithm. In the reconstruction of the tracks of a collision event, an initial

round of track and vertex reconstruction is performed using only pixel hits around

the beam spot position. The pixel vertices found at this stage are then included

among the hits from the strip layers. Next, tracks are seeded from either triplets of

hits in the tracker or pairs of hits with an additional constraint from the beam spot

or a pixel vertex. These seeds provide an initial estimate of the track’s trajectory,

with corresponding uncertainty. Each seed is then extrapolated to the other layers

of the tracker searching for compatible hits according to the equations of motion of

a charged particle in a constant magnetic field, accounting for multiple scattering
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and energy loss in the traversed material. As hits are found they are added to the

trajectory, the track is refit, and the track parameters and uncertainties are updated.

This procedure repeats iteratively until either the boundary of the tracker is reached

or no more compatible hits can be found. At this point, an additional search for hits

is performed starting from the outermost tracker layer hits and proceeding inwards.

Finally, the collection of hits associated with a trajectory is fit to obtain the best

estimate of the track parameters. This procedure constitutes one iteration of the

CTF algorithm.

In total, six CTF iterations are performed for each event. At the end of each

iteration, the reconstructed tracks are filtered to remove likely fakes and to provide

a means of quantifying the quality of the remaining tracks. This is accomplished by

appealing to the number of hits, the normalized χ2 of the track, and the compatibility

of the track originating from a pixel vertex. Tracks that pass the tightest selection

are labelled High Purity. Between each iteration, the hits that are unambiguously as-

signed to the tracks reconstructed and accepted in the previous iteration are removed

from the collection of tracker hits, leaving the remaining hits to be used in building

additional tracks.

The first two CTF iterations use pixel triplets and pixel pairs as seeds to find

prompt (consistent with the beam spot) tracks with pT > 0.9 GeV/c. This is followed

by an iteration using only pixel triplet as seeds for low-momentum prompt tracks.

In order to identify tracks displaced from the beam spot, the next iteration uses

combinations of pixel and strip layers as seeds. Finally, tracks lacking pixel hits are

seeded by strip pairs in the final two iterations.

3.3.2 Primary Vertex Reconstruction

The reconstruction of interaction vertices in events begins with the collection of re-

constructed tracks. These tracks are grouped according to similar z-coordinate at

the point of closest approach to the beam line. The assignment of these groups fol-

lows from an adaptive vertex fit, where each of the tracks associated to a vertex
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are assigned a weight between 0 and 1 based on their proximity to the commonly

determined vertex.

The resolution of the measured primary vertex strongly depends on the number

of tracks used in the fit and on the transverse momentum of those tracks. Early LHC

collisions at 0.9 and 2.36 TeV were used to measure this resolution [25], with the re-

sults shown in figure 3.7. Here, the tracks in each event with only one reconstructed

vertex are randomly partitioned into two different set. The difference in the posi-

tions of the reconstructed vertex from each set is then interpreted as the resolution

multiplied by
√

2 to account for the independent fluctuations of each collection. This

resolution is studied as a function of the number and average pT of the tracks used

in the vertex fit, in each CMS coordinate direction.
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Figure 3.7: Primary vertex resolution distributions in (left) x, (center) y, and (right)
z as a function of the number of tracks used in the vertex fit. Data and simulation
are compared for different average track-pT ranges [25].
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3.4 The CMS Muon Detectors

As indicated in the acronym CMS, muon detection is of primary importance to the

CMS physics program. Since, unlike other charged particles, muons only leave MIP

deposits in the calorimeters and travel through the magnetic yoke, they provide a

striking signature of interesting processes, particularly in high pile-up conditions at

high instantaneous luminosity [17, 26]. The muon detector system is designed to

identify muons and measure their trajectories with high precision, over the entire

kinematic range of LHC collisions. The performance requirements for the muon sys-

tem with the solenoidal field at 4 T are listed below [27]. The in situ field strength

of 3.8 T results in an approximately 5% degradation to these values.

Momentum Resolution

• Standalone muon: 8-15% at 10 GeV/c, 20-40% at 1 TeV

• Global muon (+tracker): 1-1.5% at 10 GeV/c, 6-17% at 1 TeV

Charge Assignment

• Correct to 99% confidence level up to 7 TeV/c

These performance requirements are achieved through three different types of

gaseous particle detectors distributed over a cylindrical barrel region and two planar

endcaps. The chosen detector solution consists of approximately 25,000 m2 of reliable,

robust and inexpensive muon detector planes.

Each of the muon subdetectors utilizes gas ionization, with chambers of either

drift tubes, cathode strip proportional plates or resistive plates. Each chamber is

run independently such that they can be used, along with the silicon tracker, as a

spectrometer with the CMS solenoidal magnetic field and the flux return providing

charged particle bending over the detector volume. The geometry of the muon system

follows from the detector and magnetic field-line shapes, with chambers arranged into

barrel and endcap components. In the barrel, chambers are arranged into stations at
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a fixed radial distance r from the beam line. Similarly, endcap stations are put at

fixed distances along the beam direction z from the interaction point. An illustration

of the muon system geometry for a longitudinal slice of CMS is shown in figure 3.8.

There are four stations in the barrel and in each endcap, labeled MB1–MB4 and

ME1–ME4±, respectively. Along the beam line, the barrel stations are divided into

5 wheels while the endcap stations are divided into rings, ME1/n–ME4/n, where n

increases with radial distance from the beam axis.

MB4
RB RE )

Figure 3.8: r–z cross section of a quadrant of the CMS detector with beam axis (z)
running horizontally and radius (r) increasing upward, with the interaction point in
the lower left corner. The various muon stations and the steel disks are shown in red.

3.4.1 Muon Drift Tubes

In the barrel region where the magnetic field is mostly uniform with a small strength

(≤ 0.4 T) the muon system is composed of drift tube (DT) chambers with rectan-

gular cells and sophisticated electrical field shaping. These DT chambers cover the

pseudorapidity region |η| < 1.2. The four stations and five wheels of DTs are further

divided into 12 φ-segments per wheel. Each segment contains eight layers of tubes

measuring the position in the bending plane (r–φ) and four layers for the longitudinal

plane (z).
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The basic element of the DT system is the drift cell, illustrated in figure 3.9, each

with a transverse size of 42 × 13 mm2. The cells are filled with a noble gas mixture

(85%/15% of Ar/CO2) which has a saturated drift velocity of about 55.5 µm/ns, with

a maximum drift time of almost 400 ns. A 50 µm diameter gold-plated stainless-steel

anode wire runs through the center of each cell. The wire operates at a voltage of

+3600 V, creating an electric field between the wire and the cathode strips at the

sides of the cell. Four electrodes are used to shape the effective drift field, operating

at −1800 and +1800 V, respectively, on each of the cell sides.

Figure 3.9: (Left) Sliced view of a DT chamber. (Right) Cross-sectional view of a
DT cell with drift lines and isochrones. Cathode and anode strips run perpendicular
to the viewing direction.

Four layers of parallel cells, staggered with respect to each other to maximize

position resolution, form a superlayer (SL). Each chamber consists of two SLs that

measure the r–φ coordinates using wires parallel to the beam axis, and one orthogonal

SL that measures the r–z coordinate (except for the outermost barrel station). Each

chamber is about 2.5 m long, with transverse lengths ranging from 1.9 to 4.1 m moving

out radially from the beam line.

3.4.2 Muon Cathode Strip Chambers

In the endcap regions of CMS the performance requirements for the muon system are

different with respect to the barrel. The muon flux, along with background rates,

are high and the magnetic field is strong and nonuniform. CMS uses cathode strip

chambers (CSC) in this region. With a short drift path the CSC chambers have a

fast response time, reducing the sensitivity to the nonuniform magnetic field. These
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CSCs cover the |η| region from 0.9 to 2.4 with four stations of chambers at different

distances along the beam line from the interaction point, with faces perpendicular to

the beam.

Each CSC is made up of six layers, each of which provides a 2D measurement of

the muon trajectory, as illustrated in figure 3.10 (left). Cathode strips run radially

outward through the CSCs and provide a measurement in the r–φ bending plane

while perpendicular wires provide a coarse measurement of the radial distance. Each

of the CSCs operates as a standard multiwire proportional counter (MWPC), with

the additional feature of a cathode-strip readout which can precisely measures the

position at which a muon or other charged particle crosses the gas volume [28], as

indicated by the illustration of the gas ionization avalanche profile shown in figure 3.10

(right).

4. Endcap Chambers

144

• by measuring signals from strips and wires, one easily obtains two coordinates from
a single detector plane (the precise coordinate comes from interpolation of charges
induced on strips),

• strips can be fan-shaped to measure the !-coordinate in a natural way,
• CSCs can operate in large and non-uniform magnetic field without significant

deterioration in their performance,
• gas mixture composition, temperature, and pressure do not directly affect CSC

precision and thus stringent control of these variables is not required,
• detector mechanical precision is defined by strips which can be etched or milled with

the required accuracy and can be easily extended outside the gas volume, thus
making survey of plane-to-plane alignment very simple.

F i g .  4 . 1 . 5 : Schematic view of an endcap muon CSC: a six-plane chamber of a trapezoidal
shape with strips running radially (strips have constant "! width) and wires running across.

A typical EMU CSC is a six-plane chamber of trapezoidal shape with a maximum length
of 3.4 m and with a maximum width of 1.5 m. A schematic view of a CSC is provided in
Fig. 4.1.5. The large chambers cover 10° sectors, while the smaller chambers cover 20°
sectors. (see Table 4.1.1). Cathode planes are formed by honeycomb panels with copper clad
FR4 skins. Gas gaps defined by the panels are either 6 mm thick, for the ME1/1 chambers, or
9.5 mm thick, for all other chambers. Strips are fan shaped, i.e., they run radially in the endcap
geometry and thus provide the phi-coordinate of muon hits. The strip configurations are milled
in the FR4, and the strip width ranges from 3 to 16 mm for different chambers. Wires are
stretched across strips without intermediate supports and, for readout purposes, are grouped in
bunches from 5 to 16. They provide the radial coordinate of muon hits with a few cm precision.
For the ME1/1 chamber, which is in a 3T BZ-field, the wires are strung at a 25° angle to a
perpendicular to the chamber centerline to compensate for the skewed drift of electrons.

The most important parameters for all chambers are given in Table 4.1.1. Detailed
discussions of the chambers are given in Sections 4.2 and 4.3. Overall, the Endcap Muon
System consists of 540 six-plane trapezoidal chambers, with about 2.5 million wires, 210,816
anode channels and 273,024 precision cathode channels. A typical chamber has about 1000
readout channels.

4. Endcap Chambers
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The detector technology chosen for the Endcap Muon System is the Cathode Strip
Chamber (CSC), a multiwire proportional chamber in which one cathode plane is segmented
into strips running across wires. An avalanche developed on a wire induces on the cathode
plane a distributed charge of a well known shape which is defined by electrostatics [4.1]:
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Charpak et al. [4.3] showed that by interpolating fractions of charge picked up by these
strips, one can reconstruct the track position along a wire with a precision of 50 µm or better
(for normal track incidence, the precision is almost entirely determined by the ratio of signal to
electronic noise). The principle of operation is shown schematically in Fig. 4.1.4.

muon
cathode

cathode

wires

wires

induced charge

cathode with strips

plane cathode

avalanche

3.12 mm

9.
5 

m
m

3 - 16 mm

F i g .  4 . 1 . 4 : Principle of coordinate measurement with a cathode strip chamber: cross-
section across wires (top) and across cathode strips (bottom). Close wire spacing allows for
fast chamber response, while a track coordinate along the wires can be measured by
interpolating strip charges.

The major advantages of CSCs are:
• their intrinsic spatial resolution, being basically defined by signal-to-noise ratio, can

be as good as 50 µm,
• closely spaced wires make the CSC a fast detector,

Figure 3.10: (Left) Diagram of a CSC. Each is made of six layers with the orientations
of the wires and strips illustrated by a few examples. (Right) Cross-sectional views of
the gas gap in a CSC with the anode wires and cathode planes running parallel. The
gas ionization avalanche and resulting induced charge distribution on the cathode
strips is illustrated.

Several different sizes of CSCs are used, ranging in length from about 1.7 to 3.4 m

in the radial dimension. All chambers are filled with a gas mixture of 50% CO2, 40%

Ar, and 10% CF4. Through the gas runs 80 cathode strips projected towards the

beam line and anode wires with a diameter of 50 µm. These anode wires are grouped

according to 5 to 16 wires, with widths from 16 to 51 mm, which limits the position

resolution in the wire coordinate direction. The ME1/1 chambers are operated at an

anode voltage of 2.9 kV with the others at 3.6 kV.
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3.4.3 Muon Resistive Plate Chambers

.

In addition to the DT and CSC muon detectors, there is also a dedicated trigger-

ing detector system with excellent time resolution made of resistive plate chambers

(RPC). These detectors are located in both the barrel and endcap regions where they

can provide a fast, independent trigger with a looser pT threshold (relative to the

other detectors) over a large pseudorapidity range (|η| < 1.6).

Each of the RPCs is a double-gap chambers which are operated in avalanche

mode to allow for high rates. An illustration of the RPC geometry is shown in

figure 3.11. Each of the 2 mm thick gas gaps is filled with a mixture consisting of

95.2% freon, 4.5% isobutane and 0.3% sulphur hexafluoride, surrounded by two 2 mm

thick resistive bakelite plates. The plates are coated with a thin conductive graphite

layer, with a voltage of about 9.6 kV applied. The readout strips are aligned along

fixed η in between the 2 gas gaps. When a charged particle crosses an RPC the gas

will become ionized in both gap volumes and the avalanches generated by the large

electric field over the gaps induce an image charge which is detected by the readout

strips.

The RPCs are grouped in stations like the DTs and CSCs, with four in the barrel

and three in the endcap. The innermost barrel stations have two RPC layers along

the outside of the DT chambers, with each layer divided into 2 or 3 η partitions

called rolls (figure 3.11). The RPC endcaps stations are divided into three rings with

increasing radial distance from the beam line, with 36 chambers in each ring covering

the full azimuthal range.

3.5 Muon Reconstruction

Muons are identified and their momenta measured in CMS using the combination of

the muon and inner tracker detectors. The muon reconstruction in a collision event

begins by first identifying hits in the detection layers of the muon DT and CSC sys-
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Figure 3.11: Illustration of a generic barrel RPC with two roll partitions.

tems. During this “local” reconstruction phase straight-line track segments from these

hits seed muon candidates. The reconstructed muon tracks from the hits associated

with these seeds are created in the subsequent “global” reconstruction, where infor-

mation from the inner tracker can also be used. Muon tracks reconstructed using hits

from only the muon detectors alone are called “standalone muons,” while those which

combine information from the central tracker and muon chambers are called “global

muons.” The muon system can also be used simply to tag extrapolated tracks coming

from the central tracker measurements; these tracks are denoted “tracker muons.” For

muons with momenta below ∼200 GeV/c, tracker muons have better resolution than

global muons, with the contribution from the later contributing at higher transverse

momentum.

The direction of the magnetic field changes as the muons pass from the solenoidal

barrel to the return yoke, causing a reversal of the curvature in the muon’s trajectory.

This means that the measurements from the innermost muon stations in the barrel

and endcap are crucial for muons with transverse momenta up to a few hundred GeV

since they provide the largest sagitta. For higher momenta muons the importance of

the outer stations increases as multiple scattering effects become less important. The

combined DT and CSC muon detector elements cover the full pseudorapidity interval

|η| < 2.4 with no acceptance gaps, ensuring good muon identification over a the entire

range. Offline reconstruction efficiency for the muons is typically 96-99% except in
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Figure 1.2: The muon transverse-momentum resolution as a function of the transverse-momentum
(pT ) using the muon system only, the inner tracking only, and both. Left panel: |η | < 0.8, right
panel: 1.2 < |η | < 2.4.

of the ECAL, for incident electrons as measured in a beam test, is shown in figure 1.3; the stochas-
tic (S), noise (N), and constant (C) terms given in the figure are determined by fitting the measured
points to the function
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The ECAL is surrounded by a brass/scintillator sampling hadron calorimeter (HCAL) with cov-
erage up to |η | < 3.0. The scintillation light is converted by wavelength-shifting (WLS) fibres
embedded in the scintillator tiles and channeled to photodetectors via clear fibres. This light is
detected by photodetectors (hybrid photodiodes, or HPDs) that can provide gain and operate in
high axial magnetic fields. This central calorimetry is complemented by a tail-catcher in the bar-
rel region (HO) ensuring that hadronic showers are sampled with nearly 11 hadronic interaction
lengths. Coverage up to a pseudorapidity of 5.0 is provided by an iron/quartz-fibre calorime-
ter. The Cerenkov light emitted in the quartz fibres is detected by photomultipliers. The forward
calorimeters ensure full geometric coverage for the measurement of the transverse energy in the
event. An even higher forward coverage is obtained with additional dedicated calorimeters (CAS-
TOR, ZDC, not shown in figure 1.1) and with the TOTEM [2] tracking detectors. The expected jet
transverse-energy resolution in various pseudorapidity regions is shown in figure 1.4.

The CMS detector is 21.6-m long and has a diameter of 14.6 m. It has a total weight of 12500
t. The ECAL thickness, in radiation lengths, is larger than 25 X0, while the HCAL thickness, in
interaction lengths, varies in the range 7–11 λI (10–15 λI with the HO included), depending on η .
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Figure 3.12: Reconstructed muon transverse momentum resolution as a function of
transverse momentum using the muon detectors only, the inner tracking detectors only
or both. Results are provided for muons with |η| < 0.8 (Left) and 1.2 < |η| < 2.4
(Right) [16].

gaps between the 5 wheels of the yoke (at |η| = 0.25 and 0.8) and the transition

region between the barrel outer wheels and the endcap disks [29]. The amount of

absorbing material between the interaction point and the first muon station reduces

the contribution of punch-through to about 5% of all muons reaching the first station,

and to about 0.2% of all muons reaching further muon stations.

The combination of the muon and tracker measurements yields excellent muon

resolution, as shown in figure 3.12, with complementary features that ensure continued

performance for the entire range of muon momenta in LHC collisions.
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3.6 Identification of b-quark jets

Jets that arise from bottom-quark hadronization and decay (b-quark jets) are char-

acteristic of the final states for a wide range of interesting physics processes, like

the decay of top quarks and various SUSY particles. These events can be selected

from among otherwise large backgrounds with jets from gluons and light quarks by

tagging, or identifying, these jets based on their distinguishing properties. Bottom

quarks have hard fragmentation functions and the relatively large mass, and a long

lifetime of the heavy flavor hadrons. The CMS tracking system is well suited to iden-

tify secondary decay vertices coming from long-lived hadrons and use their properties

to identify b-tagged jets.

The b-tagging algorithm used in the search for evidence of SUSY in chapter 10

begins with the collection of reconstructed jets in the event. The creation and iden-

tification of these jets is described in detail in section 5.2. For each jet, the collection

of reconstructed tracks is queried for tracks falling in a cone ∆R < 0.5 around the jet

axis, with a maximal distance to the axis of 0.2 cm. These tracks must then satisfy

several additional requirements in order to be considered for the b-tagging algorithm:

each must be a high purity track (see section 3.3.1, have a pT of at least 1 GeV/c,

a fit χ2/ndof < 5 and have transverse and longitudinal impact parameters (IP), dxy

and dz, smaller than 0.2 and 17 cm, respectively.

It is these track impact parameters with respect to the primary vertex which is

used to distinguish decay products of a b-hadron from prompt tracks. The IP is

calculated in three dimensions, relying particularly on the excellent resolution of the

pixel detector along the z-axis. Each tracks’ impact parameters are given a sign

according to the scalar product of the vector pointing from the primary vertex to the

point of closest approach with the jet direction. This means that tracks originating

from the decay of particles traveling along the jet axis will tend to have positive IP

values while the impact parameters of other prompt tracks will have both positive

and negative signs. The resolution on the impact parameter depends strongly on pT

and η of the track. In order to account for this dependency, the impact parameter
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significance SIP , defined as the ratio between the IP and its estimated uncertainty, is

used as a discriminating observable. The distribution of IP values and significances

for selected tracks associated to jets in 2011 CMS running are shown in figure 3.13,

indicating good agreement with expectations from the CMS full simulation. The IP

significance has discriminating power between the decay products of b and non-b jets,

following from displaced decay products of b-mesons.
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Figure 3.13: The impact parameter (Left) and corresponding significance (Right) for
selected tracks associated with jets [30].

The IP significances of tracks associated to a single jet are combined to form a

b-tagging discriminant using the Track Counting (TC) algorithm. Here, the tracks

associated to a jet are sorted according to decreasing values of the IP significance. This

ranking requirement biases the IP significance for the first track to higher values, while

values of the following jets provide a largely unbiased indicator of the displacement of

the tracks’ vertices since probability to have several tracks with high positive values

is low for light flavor jets. The TC algorithm uses the IP significance of the second

and third ranked tracks to calculate a discriminator value, with two different versions

tuned to yield either high efficiency (TCHE) or high purity (TCHP). The analyses

described in this thesis use the TCHE algorithm with medium (TCHEM) working

point, corresponding to a cut of 3.3 on the discriminator whose distribution is shown

in figure 3.14 (Reft).

Even this simple tagging algorithms depends on high tracking efficiency and a

reliable estimation of track parameters and their uncertainties, which makes it poten-
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Figure 3.14: (Left) Discriminator values for the TCHE algorithm for data and simu-
lated events. (Right) Light-flavor mistagging rate vs. b-tagging efficiency for different
pile-up scenarios [30].

tially sensitive to changes in the running conditions of the experiment. The impact

of high pile-up on the b-tagging performance is evaluated in figure 3.14 (right), which

shows the rate for mistagging light-flavor jets as a function of b-tagging efficiency for

the TCHE discriminant evaluated on jets reconstructed in collision events. We ob-

serve that the b-tagging performance is largely insensitive to the number of interaction

vertices in these events.
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Chapter 4

Electrons, Photons, and the CMS
ECAL

4.1 The CMS Electromagnetic Calorimeter

The CMS electromagnetic calorimeter (ECAL) is designed to provide a fast response

with excellent energy resolution to electrons and photons incident on its face. Fur-

thermore, the device must be radiation tolerant, maintaing performance in the high

particle-flux LHC environment. The ECAL is a homogeneous crystal calorimeter

made of 75,848 lead tungstate (PbWO4) crystals. The detector consists of a barrel

region (EB), covering up to pseudorapidity |η| =1.48, and two endcaps (EE), that

extend the coverage up to |η| = 3.0. A silicon/lead pre-shower detector (ES) is in-

stalled in front of the crystal calorimeter in the endcaps in order to improve the γ/π0

discrimination and the vertex reconstruction for photons, covering a pseudorapidity

region 1.65 < η < 2.6. An illustration of the CMS ECAL is shown in figure 4.1 [31,32].

When electrons and photons pass through the ECAL crystals they lose energy

through interaction with the Coulomb fields of the crystal matter constituents, bring-

ing the crystal medium into an excited state. In the quick return to the ground state,

blue scintillation light is released in the resulting electromagnetic shower. This light

is detected by avalanche photodiodes (APDs) in the barrel region [33, 34] and by

vacuum phototriodes (VPTs) in the endcaps [35].
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Figure 4.5: Layout of the CMS electromagnetic calorimeter showing the arrangement of crystal
modules, supermodules and endcaps, with the preshower in front.

Figure 4.6: The barrel positioned inside the hadron calorimeter.
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Figure 4.1: Illustration of the CMS ECAL showing the arrangement of crystal mod-
ules, supermodules and endcaps, with preshowers in front.

4.1.1 ECAL PbWO4 Crystals

The properties of the ECAL PbWO4 make them ideal for the CMS detector [36]. Their

high density (8.28 g/cm3) and short radiation length (0.89 cm), with correspondingly

small Moliere radius (2.2 cm) mean that the calorimeter can be compact, and with

fine granularity the direction and shower shape of incident particles can be measured

accurately [37,38]. Example EB and EE crystals are shown in figure 4.2.

The scintillation mechanism in the crystals is fast, such that the decay time is on

the order of the LHC designed inter-bunch-crossing time, with 80% of light emitted

over 25 ns. This light is blue-green with a broad maximum at approximately 425

nm [38, 39]. From this scintillation light about 4.5 photoelectron per MeV are col-

lected in the APDs and VPTs. The crystals are polished after machining in order to

maximize internal reflection and hence light collection.

4.1.2 ECAL Crystal Geometry

The EB is composed of 36 supermodules which, in turn, consist of 1,700 tapered

crystals with a frontal area of approximately 2.2 × 2.2 cm2 and a length of 23 cm,

corresponding to 25.8 radiation lengths. This granularity is approximately the same
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Figure 4.1: Longitudinal optical transmission (1, left scale) and radioluminescence intensity (2,
right scale) for production PbWO4 crystals.

Figure 4.2: PbWO4 crystals with photodetectors attached. Left panel: A barrel crystal with the
upper face depolished and the APD capsule. In the insert, a capsule with the two APDs. Right
panel: An endcap crystal and VPT.

The crystals have to withstand the radiation levels and particle fluxes [69] anticipated through-
out the duration of the experiment. Ionizing radiation produces absorption bands through the
formation of colour centres due to oxygen vacancies and impurities in the lattice. The practical
consequence is a wavelength-dependent loss of light transmission without changes to the scintil-
lation mechanism, a damage which can be tracked and corrected for by monitoring the optical
transparency with injected laser light (section 4.9). The damage reaches a dose-rate dependent
equilibrium level which results from a balance between damage and recovery at 18°C [64, 70].

– 91 –

Figure 4.2: ECAL PbWO4 crystals with attached photodetectors. (Left) EB crystal
with APD. Two APDs in insert. (Right) EE crystal with VPT.

as the Moliere radius of the ECAL crystals. The crystals are mounted in a quasi-

projective geometry, relative to the interaction point, to avoid gaps in the geometric

coverage from intercrystal cracks. Each crystal covers ∆η × ∆φ = 0.174 × 0.174 in

projective-space.

The crystals individually wrapped in a 0.1 mm thick alveolar structure made with

an aluminum layer facing the crystal and two layers of glass fiber-epoxy resin. The

crystals are arranged into modules, each containing 400 or 500 crystals depending on

η, such that the nominal crystal-to-crystal distance is 0.35 mm, with 0.5 mm between

the crystals of each module. A supermodule is made of four modules separated by 4

mm thick aluminum webs, illustrated in figure 4.3.
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Figure 4.3: Layout of the ECAL barrel mechanics.

shift toward the interaction point by 1.6 cm when the 4-T magnetic field is switched on. The endcap
consists of identically shaped crystals grouped in mechanical units of 5×5 crystals (supercrystals,
or SCs) consisting of a carbon-fibre alveola structure. Each endcap is divided into 2 halves, or
Dees. Each Dee holds 3 662 crystals. These are contained in 138 standard SCs and 18 special
partial supercrystals on the inner and outer circumference. The crystals and SCs are arranged in a
rectangular x-y grid, with the crystals pointing at a focus 1 300 mm beyond the interaction point,
giving off-pointing angles ranging from 2 to 8 degrees. The crystals have a rear face cross section
30×30 mm2, a front face cross section 28.62×28.62 mm2 and a length of 220 mm (24.7 X0). The
endcaps crystal volume is 2.90 m3 and the weight is 24.0 t. The layout of the calorimeter is shown
in figure 4.5. Figure 4.6 shows the barrel already mounted inside the hadron calorimeter, while
figure 4.7 shows a picture of a Dee.

The number of scintillation photons emitted by the crystals and the amplification of the APD
are both temperature dependent. Both variations are negative with increasing temperature. The
overall variation of the response to incident electrons with temperature has been measured in test
beam [74] to be (−3.8±0.4)%◦C−1. The temperature of the system has therefore to be maintained
constant to high precision, requiring a cooling system capable of extracting the heat dissipated by
the read-out electronics and of keeping the temperature of crystals and photodetectors stable within
±0.05◦C to preserve energy resolution. The nominal operating temperature of the CMS ECAL is
18°C. The cooling system has to comply with this severe thermal requirement. The system employs
water flow to stabilise the detector. In the barrel, each supermodule is independently supplied
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Figure 4.3: Layout of ECAL barrels crystals and modules into one supermodule.



37

The two ECAL EEs are constructed from four half-disk “dees,” each composed of

3662 tapered crystals. Each EE crystal has a frontal area of 2.86 × 2.86 cm2 and a

length of 22 cm, corresponding to 24.7 radiation lengths. As for the barrel, EE crystals

are arranged in a quasi-projective geometry, focussed at a point 1.3 m farther than

the nominal interaction point along the beam line, with off-pointing angles between

2◦ and 8◦. The crystals are grouped into 5 × 5 supercrystals, with 138 in each dee.

They are arranged in a rectangular x-y grid, with 18 partial supercrystals on the

inner (around the beam line) and outer circumference.

In front of each of the ECAL endcaps is the preshower ES, consisting of two

orthogonal planes of silicon strip sensors interleaved with two planes of lead absorbers

(2 and 1 X0 respectively). The sensors have an active area of 61 × 61 mm2, divided

into 32 strips. They are grouped into “ladders” of 7, 8, or 10 sensors.

4.1.3 ECAL Energy Resolution

The ECAL barrel energy resolution for electrons is measured in test-beams (see sec-

tion 4.2 for a description) to be [40]:

σE
E

=
2.8%√
E(GeV)

⊕ 12%

E(GeV)
⊕ 0.3%, (4.1)

where the three contributions correspond to the stochastic, noise and constant terms,

respectively. This is measured through the reconstruction of electrons from a 4 ×
4 mm2 collimated beam incident in the center a a single crystal, to minimize shower

leakage effects. The energy is reconstructed from the 3× 3 surrounding crystals. For

the in situ environment, crystal intercalibration [41] and transparency monitoring,

the CMS magnetic field and pile-up energy contributions must all be controlled to

maintain a resolution of 0.5% for 100 GeV particles. In practice, the ultimate ECAL

energy resolution in the in situ running environment depends on the material budget

in front of the ECAL detectors and calibration of electrons and photons to account

for inter-crystal energy leakage, radiation-induced crystal transparency changes (sec-

tion 4.1.4) and the recovery of Bremsstrahlung radiation. The energy resolution of
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electrons from Z decays is measured to be better than 2% in the central region of

the ECAL barrel and 3% to 4% elsewhere. Similarly, the energy resolution of recon-

structed photons following from 125 GeV Higgs boson decays varies between 1.1%

and 2.5% in the ECAL barrel and between 2.2% and 5% in the endcaps [42].

4.1.4 ECAL Crystal Laser Monitoring System

.

The ECAL crystals are radiation resistant in that their scintillation mechanism is

not altered through electromagnetic irradiation [43]. On the other hand, the crystals

show a rapid loss of optical transmission under irradiation due to the production of

color centers. While this damage will self-anneal, the transient color centers reduce the

transparency of the crystals and absorb a fraction of the transmitted light, effectively

reducing the response of the crystals to electromagnetic showers. This effect results

in a dose-rate dependent oscillation of the crystals’ transparency and energy response

which follows the LHC collision fill-cycle, as shown in figure 4.4. In order to maintain

the ECAL resolution these transparency fluctuations are monitored and corrected for

using the ECAL laser monitoring system [44,45].

Crystals’ transparencies are monitored by injecting laser pulses through optical

fibers directly into the crystals. Their crystals’ APD response is normalized by the

signal from silicon PN photodiodes, which receives the same laser light as the crystals.

The ratio of an APD response to that of the PN, R(t) = APD(t)/PN(t), indicates the

relative response as a function of time. A blue laser (λ = 440 nm) is used to monitor

crystal transparency, chosen to correspond to the PbWO4 scintillation peak. Despite

this attempt to match the light spectra, the different optical paths of scintillation

and laser light through the crystal, respectively, means that the relationship between

the diminished energy response of the crystals to the laser light and to incident

electromagnetic particles is not linear. For small attenuations (R(t) < 10%) the
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Figure 4.4: Relative crystal energy response as a function of time, as measured by
the laser monitoring system. The response is averaged over the η ranges listed in the
legend. Long periods without colliding beams are shaded.

relation between the response to scintillation and laser light can be modeled as

S(t)

S(t0)
=

(
R(t)

R(t0)

)α
, (4.2)

where S(t) represents the scintillation light response and α is an effective parameter

characteristic of each crystal which depends on the production method (α ∼ 1.5 for

BCTP crystals and α ∼ 1 for SIC). Studies of the dynamics of these transparency

changes and measurements of α were performed in dedicated test beams are described

in section 4.2.

In addition to the blue laser a second wavelength in the infrared (λ = 796 nm),

far from the scintillation emission peak, is also used to monitor the crystals. At

this wavelength, the crystal response is little affected by the transparency changes

and is used to monitor the stability of the system. In total there are three light

sources, 2 blue and 1 near infrared, with duplication of the former to provide fault

tolerance during in situ monitoring. Each source includes an Nd:YLF pump laser, a

Ti:Sapphire laser and associated cooling an control electronics. The full pulse energy
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is 1 mJ at the blue wavelength, corresponding to a 1.3 TeV particle in the ECAL, with

a linear attenuator allowing for 1% steps down to 13 GeV. PN diode measurements

monitor the intensity of the laser pulses to at a precision of 0.1%. The light pulses are

distributed to the crystals and PN diodes via a system of optical fibers, illuminating

one of 88 calorimeter regions at a time, with optical fiber fan-outs transmitting light to

each crystal individually. Each crystals’ response is measured once every 20 minutes

during the LHC abort gap in between collision-filled bunch crossings.
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4.2 Test Beam Studies of ECAL Crystal Trans-

parency Changes

The lead tungstate crystals used in the CMS ECAL are radiation hard to high inte-

grated doses but experience a dose-rate dependent transparency change, as described

in section 4.1.4. During LHC accelerator operation this dose-rate for ECAL crystals

will vary significantly, depending on the instantaneous luminosity and the location of

the crystal in the ECAL. At design luminosity a typical dose-rate for the ECAL barrel

crystals will be 15 rad/h and up to a factor of 100 higher for the crystals closest to

the beam pipe. The transparency loss will largely recover when the irradiation stops,

typically in a fast initial recovery, with a time constant on the order of tens of hours,

followed by a slower recovery on the time-scale of hundreds to a few thousand hours.

These transparency changes are monitored continuously by the laser monitoring sys-

tem. The relationship between the crystals’ time dependent response to laser light

(R) and its response to scintillation light (S) is well modeled by [46]

(
S

S0

)
=

(
R

R0

)α
, (4.3)

in the regime where ∆S = S0 − S is small (≤ 10%). This relationship can be used

to correct crystals’ energy response for transparency changes, using a parameter α

characteristic to each crystal.

In 2006 and 2007 test beams irradiations of a collection of ECAL crystals, installed

in fully functioning ECAL supermodules, were performed in order to study the dy-

namics of crystal transparency change and understand the the intrinsic variations of

crystals’ α parameters. In these test beams, components of the CMS ECAL were

placed in front of monoenergetic electron beams.

4.2.1 Test Beam Setup

During the 2006 ECAL test beam campaign nine ECAL barrel supermodules (SM)

were intercalibrated and studied in the H4 beam line at the CERN SPS. The SMs were
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mounted on a movable, computer operated table, allowing the electron beam to be

directed at all crystals with the same quasi-projective geometry as the CMS detector

in LHC running, relative to the nominal interaction vertex. As a result, the test beam

setup differs from LHC operation only in the absence of the solenoidal magnetic field

and material between the interaction point and ECAL barrel (beam line and tracker).

The SMs were installed with final versions of readout electronics, high and low voltage

systems, cooling system, temperature monitoring and laser monitoring.

Readout of the SM crystals was triggered using plastic scintillator tiles with a

20 × 20 mm2 area, slightly smaller than the front faces of the crystals (≈ 22 × 22

mm2). A Time to Digital Converter (TDC) is used to measure the phase between

the triggers given by these tiles and the ADC clock. The transverse position of the

electron beam was measured using four layers of scintillating fibers hodoscopes. An

impact point resolution of 250 µm is achieved [47] in both x and y (corresponding to

η and φ, respectively, if the SM were installed in CMS). During the 2006 test beam,

five different ECAL crystals were irradiated.

This same setup was used for the 2007 ECAL endcap test beam, with the excep-

tion of an improved movable table for the detector which allowed for more accurate

positioning in front of the beam. In this test beam, 20 EE supercrystals were mounted

in a 4× 5 rectangular grid. The precision table allowed for shooting the beam at the

corner between four crystals, irradiating all of them simultaneously and increasing

the total number irradiated crystals by almost a factor of 10, relative to 2006.

4.2.2 Estimation of Irradiation Dose Rates

For 2006 test beam irradiations the beam was aligned such that its center was incident

on the center of the face of the crystal being studied. Each crystal was irradiated for

approximately ten hours with a continuous beam of either 120 GeV/c or 90 GeV/c

momentum electrons, for crystals in supermodules 22 and 9, respectively. In order

to permit comparison to earlier irradiation studies (and to better understand the

radiation hardness of the crystals for in situ running) we estimate the dose on each
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crystal during irradiation. This is done by modeling both the electron beam profile in

the plane transverse to the crystal face and the electromagnetic shower profile within

the crystal.

To model the shower profile we note that, on average, only 10% of the energy lies

outside the cylinder with radius RM = 2.19 cm, the Moliere radius characteristic of

the crystals. These distributions are often described as the sum of two Gaussians,

but for convenience we will estimate it as a single Gaussian. Assuming the transverse

profile shape remains constant, the restriction that 90% of the energy lies within a

radius RM dictates that the transverse profile has σT = 1.02 cm.

In the longitudinal direction, we assume that the energy deposition is described

by a gamma distribution [48]:

dE

dt
= E0b

(bt)a−1e−bt

Γ(a)
, (4.4)

where t = x/X0 is a scale variable in units of radiation lengths and E0 is the incident

electron energy. The variables, a and b are set by noting that the longitudinal shower

maximum, tmax, can be estimated as

tmax = (a− 1)/b = log(E0/Ec)− 0.5 , (4.5)

where Ec is the critical energy, defined as the energy at which the rates of loss from

ionization and Bremsstrahlung are equal. For lead tungstate crystals, we estimate Ec

= 10.8 MeV by noting that RM = X0Es/Ec and assuming that |dE/dt|brems ≈ E/X0.

Here, Es is the scale energy
√

4π/α mec
2 = 21.2 MeV. For the parameter b we assume

b ≈ 0.5, a reasonable choice a range of materials [48].

With these assumptions, we estimate the dose at shower max (approximately 8.8

X0 and 8.5 X0 for 120 GeV/c and 90 GeV/c momentum electrons, respectively) as

Dosemax(e, 120 GeV/c) = 3.7× 10−8 ×Ne(Gy) , (4.6)

Dosemax(e, 90 GeV/c) = 2.9× 10−8 ×Ne(Gy) , (4.7)
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where Ne is the number of incident electrons.

In order to model the the beam intensity, we use trigger counters placed in the

beam line which record the number of particles crossing a 50× 50 mm2 area centered

on the crystal under study. We approximate the beam profile as normally distributed

in x and y and under that assumption measure for the 120 GeV/c momentum electron

beam (σx, σy) = (0.6 cm, 1.1 cm) and, for 90 GeV/c beam, (σx, σy) = (1.0 cm, 1.9

cm).

With models for the beam and shower profiles we can calculate the average dose

over the entire crystal by convoluting the two profiles, giving an average dose over

the crystal volume as

< Dose > (e, 120 GeV/c) = 7.0× 10−9 ×N(Gy) (4.8)

< Dose > (e, 90 GeV/c) = 4.2× 10−9 ×N(Gy) , (4.9)

where N is the number of hits recorded by the trigger counters. Using this estimate,

we find that the average dose rates ranged from 0.005 Gy/h to 0.02 Gy/h, with the

values for the five irradiated crystals from the 2006 test beam summarized in figure 4.5

(bottom). The integrated dose as a function of time for these irradiations is shown

in figure 4.5 (top).

4.2.3 Treatment of Crystal Irradiation Data

During irradiation, electron-beam and laser data were recorded alternatively, with a

period of roughly 10 minutes. An example irradiation, for crystal 168, supermodule

22, is shown in Figure 4.6. Here, each point shows the normalized electron and

laser responses averaged over many events taken in the interval. The electron points

correspond to a Gaussian fit to the 120 GeV electron energy distribution, with error

bars shown. The laser points are calculated by fitting the distribution of 600 APD/PN

values taken for each laser run with a Gaussian function. For each electron event, a

corresponding laser response is calculated by linearly interpolating between the laser

points that proceed and follow the electron run.
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Figure 4.5: (Top) Mean dose versus time for the various crystals under electron
irradiation. (Bottom) Dose rates and integrated doses for the irradiated crystals.

The crystal energies are calculated from the 10 ADC samples read from the APDs

of a crystal every 25 ns, as described in section 4.3, and used to calculate the pulse

amplitude. This is converted into GeV, and an intercalibration constant is applied,

derived using the S1 algorithm [49].

For the laser light energy reconstruction in the ECAL crystals, the difference in

pulse shape between the laser and scintillation light means that the weights applied

to the 10 ADC samples to calculate the pulse amplitude are no longer appropriate.

Instead, the pedestals are defined for each crystal’s channel on an event by event basis

using the first 3 digitized samples, occurring before the laser signal in the 10 sample

window. The maximum amplitude is obtained using a fit function [50]

A(t) = A0

(
t− t0
β

)
e−α(

t−t0+β
β ) , (4.10)

where β is the electronics decay time and the product αβ is the electronics rise time.

The response of the reference PN photodiodes to laser light is much slower, with a

shaping time of about 750 ns, digitized in 50 samples at 40 MHz. Their maximum
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Figure 4.6: Normalized electron, laser and interpolated laser responses for a single
crystal.

response is calculated with a 2nd-degree polynomial fit using the 16 samples around

the maximum sample. The mean of the first five samples is subtracted as a pedestal.

The laser response for each crystal channel is given by the reconstructed APD

amplitude divided by the PN amplitude corresponding to that channel, denoted

APN/PN. Each laser run consists of 600 events for each channel, with the APD/PN

value for the run calculated using an iterative Gaussian fit to these events’ values.

Subsequently, for each irradiated crystal, a reference channel was chosen in the same

5× 5 trigger tower away from the electron beam. The irradiated crystal’s APD/PN

value for each laser run is then divided by the APD/PN value from the reference

crystal in order to correct for variations in the laser pulse width.

4.2.3.1 Correction for Impact Point

The energy deposition of an electron in a single crystal depends, among other things,

on its position of incidence on the face of the crystal. Electrons which hit the crys-

tal near an intercrystal boundary will experience larger variations in response due

to shower leakage, degrading the response resolution. A correction is developed by

measuring the crystal response as a function of hodoscope measurement, effectively
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parameterizing the response as a function of incidence position. The correction is

calculated using the data itself, using the approach described in [49] with slight mod-

ifications briefly described here. The position dependence of the crystal response can

be factorized as the product of two 4th-order polynomials, PX(x) and PY (y), each a

function of one of the hodoscope coordinates

F (x, y) = PX(x)× PY (y) . (4.11)

Using events selected from a 40 mm × 40 mm region in the (x,y) plane the mean

response of the crystal vs. impact point is fit in the 20 mm × 20 mm region centered

on the point of maximum response, determining the parameters of the polynomials.

A unique pair of polynomials is calculated for each crystal studied. Subsequently, the

corrected response for the ith event, Scorri , is calculated from the uncorrected response,

Suncorri by

Scorri = Suncorri

PMAX
X × PMAX

Y

PX(xi)× PY (yi)
= Suncorri × f(~hi) , (4.12)

where (xi, yi) = ~hi are the impact coordinates of the ith event and PMAX
X and PMAX

Y

are the maximum values of the polynomials.

4.2.4 Crystal α Parameter Measurement

The traditional approach for measuring α for a crystal is the correlation plot method,

which involves fitting data points which each correspond to the average response of

many laser or electron events for a single crystal, such as in Figure 4.6. A weakness

of the approach is that the response changes over the time interval used to derive

a single point are neglected, as are shower variations leading to sharing of energy

with neighboring crystals. Finally, the method is performed on only one crystal at

a time, rather than over multiple crystals in a way suited to in situ implementation,

where there is no monoenergetic electron beam available for calibration. We propose

a new approach which improves on the shortcomings of the correlation plot method,

whereby we measure α by explicitly appealing to what the parameter is intended to
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in the first place; the energy resolution is interpreted as a likelihood and α is chosen

as the value which maximizes it. We describe this energy resolution minimization

approach, along with the correlation plot method, in the context of these test beam

irradiations.

4.2.4.1 Correlation Plot Approach

A typical example of the crystal response evolution is given in Figure 4.6, where

the normalized electron and laser responses are plotted versus time. For each elec-

tron point, a corresponding laser point is calculated by linearly interpolating between

the proceeding and following laser measurements. The alpha parameter from equa-

tion (4.3) is measured by comparing the electron responses to the corresponding

interpolated laser responses. Specifically, equation (4.3) can be re-expressed using a

logarithmic scale as

logS = α logR +K , (4.13)

where K = logS0 − α logR0. Using this relation, the parameter α can be obtained

from a linear fit of logS as a function of logR. In this case, the normalization factors of

the electron and laser responses contribute only to the constant K and do not directly

affect the determination of α with their uncertainties. An example correlation plot

and α fit are shown in Figure 4.7. In this case, the correlation plot is made using

electron events incident in a 4 mm × 4 mm region centered on the crystal’s point

of maximum response, as measured by the hodoscope. This restriction is imposed

in order to minimize variations from shower leakage. For each electron run, events

are separated into bins by corresponding hodoscope values. The events in each bin

are then grouped, according to time, into subruns such that there are at least 3000

events, giving a finer sampling of response loss evolution over the transverse geometry

of the crystal face. The distribution of approximately 3,000 events is then fit using

a simple Gaussian in a restricted range (one FWHM around the peak) in order to

extract the mean value and error for that sample. This mean and error corresponds

to one electron point in the correlation plot. The number 3000 is chosen so that,
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Figure 4.7: Correlation plot for crystal 128, supermodule 9, with the mean normalized
electron energy loss plotted versus the mean normalized laser signal loss.

assuming roughly 0.5% energy resolution, the error on the mean of the distribution

will be below 0.1%. The error in the measurement of α is then calculated by looking

at the spread of α determined from independent correlation plots in 25 different 2

mm x 2 mm hodoscope bins in a 10 mm x 10 mm region on the face of the crystal,

centered at the point of maximum response.

4.2.4.2 Energy Resolution Minimization Approach

In essence, the energy resolution minimization (ERM) approach to α parameter ex-

traction is algorithmically similar to the correlation plot approach except, rather than

grouping events into distributions according to time bins, events are considered in-

dividually. Each electron event, with a corresponding laser measurement, is used

to construct an energy distribution whose standard deviation is explicitly minimized

with respect to the alpha parameter.

During LHC running, the crystal response will be corrected as

S(t)corr = S(t)raw

(
R0

R(t)

)α
. (4.14)

Applying this correction to each individual electron event from test beam irradiation

for a given crystal results in a monoenergetic energy distribution whose standard
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deviation is a function of the crystal’s α parameter. The ERM approach proceeds

by minimizing the standard deviation divided by the mean of the electron response

distribution with respect the α parameter. This ensures that the chosen α is the

one which yields the best energy resolution, which should also correspond to the true

value. In practice, it is more convenient to minimize the equivalent error function

Err(α) =
σ2

x̄2
+ 1 =

∑N
j (xj)

2

N

N2

(
∑N

j xj)
2

=
x̄2

x̄2
, (4.15)

where xj denotes the corrected energy of the jth event and is a function of α, σ is

the standard deviation and N the number of events in the energy distribution. With

the error function Err(α) written explicitly, the gradient with respect to α can be

calculated as
∂Err

∂α
=

2

Nx̄2

N∑

j

∂xj
∂α

(
xj −

x̄2

x̄

)
. (4.16)

Equations (4.15) and (4.16) are general in that they can apply to different formu-

lations of the corrected event energy xj. For example, xj can represent the response of

the central crystal in an electron event, denoted E1. Alternatively, xj can represent

the sum of the crystal responses from a matrix of crystals containing the incident

electron, each response corrected with the corresponding crystal’s α parameter. For

this study, determination of α parameters will be done using both the E1 formulation

and E25 formulation, where E25 represents the sum of the crystal responses from a

5 x 5 matrix of crystals surrounding the central crystal upon which the electron is

incident.

For the E1 formulation, the energy response of the single crystal is especially

sensitive to the impact position of the incident electron, as variations in shower con-

tainment result in variations of the deposition of energy in surrounding crystals. Sub-

sequently, it is necessary to correct the E1 response using the methods described in

section 4.2.3.1. Denoting the raw central crystal response and corresponding normal-

ized laser response for the jth event Sj and Lj, respectively, we write equations (4.15)
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and (4.16) in the context of the E1 formulation as

xj := f(~hj)SjL
−α
j , (4.17)

ErrE1(α) =

∑N
j (f(~hj)SjL

−α
j )2

N

N2

(
∑N

j f(~hj)SjL
−α
j )2

,

∂ErrE1

∂α
=

2

N(
∑N

i f(~hi)SiL
−α
i )2

×

N∑

j

[
f(~hj)SjL

−α
j log(Lj)

(∑N
i (f(~hi)SiL

−α
i )2

∑N
i f(~hi)SiL

−α
i

− f(~hj)SjL
−α
j

)]
,

where f(~hj) is the containment correction factor from equation 4.12 and ~hj = (xj, yj)

is the hodoscope coordinates of the jth event.

For the E25 formulation we consider the α parameter of the central crystal of

incidence, which we denote the kth crystal. Here, the containment correction used

in the E1 formulation is unnecessary since, by including the sum of the corrected

responses from all crystals in a 5 x 5 matrix surrounding the central crystal, energy

lost due to showering into neighboring crystals is already accounted for. Denoting,

for the jth event, the raw crystal and normalized laser responses for the lth crystal

as Sjl and Ljl , respectively, the error function and its gradient with respect to αk can

be expressed as

xj :=
25∑

l

clS
j
l (L

j
l )
−αl , (4.18)

ErrE25(αk) =

∑N
j (
∑25

l clS
j
l (L

j
l )
−αl)2

N

N2

(
∑N

j

∑25
l clS

j
l (L

j
l )
−αl)2

,

∂ErrE25

∂αk
=

2

N(
∑N

i

∑25
l clSil (L

i
l)
−αl)2

×

N∑

j

[
ckS

j
k(L

j
k)
−αk log(Ljk)

(∑N
i (
∑25

l clS
i
l (L

i
l)
−αl)2

∑N
i

∑25
l clSil (L

i
l)
−αl

−
25∑

l

clS
j
l (L

j
l )
−αl

)]
,

where the sum over l is over the crystals in the 5 x 5 matrix and cl is the inter-

calibration constant of the lth crystal.
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4.2.4.3 ERM Method Implementation

Due to the generality of the ERM formulation there is a great deal of freedom in

specifying the specific details of its implementation, which should be chosen to fit the

form of the data. For this study, electron data is grouped into runs such that, over the

course of one run, the magnitude of crystals’ transparency change is small compared

to that over the course of the entire irradiation. As a result, it is possible to consider

events from the same run together for preselection without a priori knowledge of the

crystals’ α parameters.

One issue is that, given the formulation of this approach, the error function and its

gradient can be disproportionately dominated by outliers in the energy distributions.

Additionally, distributions that are largely nonsymmetric can result in a systematic

error in the determination of α, such as when there is a low energy tail in the distri-

bution. For other studies, where the peak positions of quasi-Gaussian distributions

are of interest, these problems are overcome by fitting the distribution in order to

accurately measure the peak position. Here however, when it is necessary to use an

explicit error function with a well-defined gradient, fitting the distributions in order

to determine the standard deviation results in a non-smooth function of the α param-

eter, as shown in Figure 4.8 (left). A solution is to instead select events in the energy
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Figure 4.8: (Left) Fitted sigma/mean for crystal 168, supermodule 22. (Right)
Sigma/mean for the same crystal, considering only events with energies near the
peak response.

distribution in a symmetric way around the peak of the distribution and to exclude
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outliers. This is accomplished by fitting the energy distributions for a particular

ERM formulation (E1 or E25) using a Gaussian function within a restricted range

around the peak position, and considering only events around the measured peak.

The results of this procedure on the error function are shown in figure 4.8 (right). To

ensure that the range of this event selection cut does not bias the measurement of

the α parameter it is varied and α is recalculated, indicating no dependence on the

cut range.

With an explicit error function and its gradient, the problem of α parameter

measurement is reduced to that of a one-dimensional minimization. For this study, a

parabolic interpolation was used that takes into account the gradient in order to speed

convergence in the determination of α. The convergence qualities of the procedure

for a sample crystal are demonstrated in figure 4.9.
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4.2.5 Test Beam α Measurements from 2006

In addition to the requirements from each α measurement-method, events must satisfy

a 10 mm × 10 mm hodoscope cut in the x and y hodoscope coordinates, centered

at the position of maximum response for the crystal. For each crystal, the data used

to measure α is split into 25 equally sized sets. From the resulting 25 independent

measurements of α the error in the measurement is calculated from the spread in the

distribution. The results of the measurements are summarized in Tab. 4.1. There
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Crystal ID Correlation plot α E1 α E25 α Change in response

128 1.52 ± 0.05 1.55 ± 0.02 1.52 ± 0.02 1.2 %
148 2.77 ± 0.51 1.58 ± 0.15 1.36 ± 0.24 0.5 %
168 1.34 ± 0.02 1.382 ± 0.004 1.364 ± 0.003 3.8 %
552 1.50 ± 0.11 1.55 ± 0.06 1.50 ± 0.03 0.9 %
672 0.76 ± 0.15 0.73 ± 0.15 0.65 ± 0.05 0.4 %

Table 4.1: Measured values for crystal α parameters using different methods.

is a strong correlation between the precision of the measurement of the α parameter

for a crystal and the corresponding magnitude of transparency change during the

irradiation period, as shown in Figure 4.10. This relationship is expected, since the

the energy resolution of the crystal is more dependent on the α parameter when there

is a greater change in response due to crystal transparency change, with a longer lever-

arm for the correlation plot method and deeper error function minimum for the ERM

approach. In general, we conclude that the minimization approaches are more precise

than the correlation plot approach. Despite differences uncertainties, the values for

α measured by each method are consistent, as illustrated in figure 4.11.
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Figure 4.10: Magnitude of crystal response change during the irradiation run vs.
uncertainty in the measured value of α (E25) for all crystals
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4.2.5.1 Efficacy of Correction Procedure

Ultimately, the goal of the laser monitoring system is to correct for the energy loss due

to radiation damage in order maintain the resolution of the calorimeter. Figure 4.12

demonstrates the difference in the resulting energy distributions for crystal 168 for

the single crystal energy (E1), the energy of the 3 × 3 matrix of crystals centered

on 168 (E9) and the energy of the surrounding 5 x 5 matrix of crystals (E25) when

using no laser correction and a correction with α = 1.36 (the value measured for this

crystal using the E25 ERM formulation). The distributions where made with a 10 ×
10 mm2 hodoscope cut and no containment correction was applied. The conversion

of 40 MeV/ADC is used as the default of the reconstruction code, but should clearly

be calibrated to a different value (the energy response peaks at 110 rather than 120

GeV) . When the laser monitoring correction is applied, the surrounding crystals

are corrected with their respective normalized laser measurements using α = 1.6,

although since the magnitude of their transparency change is small the dependency

of the E9 and E25 values on these neighboring crystals’ α values is negligible.

Although relatively small, a clear difference in energy resolution can be observed

between the distributions corresponding to the transparency corrections using a de-

fault α = 1.6 parameter and the measured α parameter for the irradiated crystal, as

illustrated in Tab. 4.13. The contribution to energy resolution from uncertainty in
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Figure 4.12: E1 (left), E9 (center) and E25 (right) energy distributions for crystal
168, with and without laser corrections.

E1 σ(E)/E E9 σ(E)/E E25 σ(E)/E

uncorrected 1.69% 1.41% 1.36%

α = 1.60 0.722% 0.535% 0.539%

α = 1.36 0.700% 0.528% 0.527%

Figure 4.13: Fitted energy resolutions for crystal 168 during irradiation with and
without laser monitoring corrections. With corrections, the resolution is restored to
values achieved before irradiation.

the crystal α parameter can be described by

∆E

E
= log

(
S

S0

)
∆α

α
, (4.19)

where S/S0 is the normalized crystal electron response. Observing the difference in

peak energy between the energy distributions corrected with the measured α and

default α = 1.6 (110.5 and 109.9, respectively, for E1), one can estimate the con-

tribution to the energy resolution from the systematic uncertainty of α as (110.5 −
109.9)/109.9 = 0.55%. Taking the value of S/S0 = 0.962 for crystal 168 from Tab. 4.1

and an error in α of 16 %, equation (4.19) yields an estimation on the corresponding

shift in the peak energy from using the incorrect α of 0.6 %, consistent with the value

observed in data.



57

4.2.6 Test Beam α measurements from 2007

The EE Dee used in the 2007 test beam was equipped with 20 supercrystals, with

individual crystals produced by either BTCP (russian, same as all the barrel) or SIC

(chinese). The channel numbering and location of irradiated crystals is illustrated

in figure 4.14. The 2007 test beam α measurements differed from 2006 in both the

number of irradiations performed (12 unique positions, some multiple times in 2007)

and the irradiation technique; Rather than irradiating the center of a single crystal,

the electron beam was aimed at the corner between four crystals. This increased the

number of irradiated crystals for which α could be measured by a factor of four.

Position Irradiated Crystals Manufacturer

1 131, 132, 151, 152 BTCP
2 136, 137, 156, 157 BTCP
3 236, 237, 256, 257 SIC
4 336, 337, 356, 357 BTCP
5 437, 438, 457, 458 BTCP
6 x431, 432, 451, 452 SIC
7 231, 232, 251, 252 BTCP
9 422, 423, 442, 443 BTCP
10 127, 128, 147, 148 SIC
11 123, 124, 143, 144 SIC
12 174, 175, 194, 195 BTCP

Figure 4.14: (Top) Channel numbering of the 20 super crystals used in the 2007
EE test beam. Positions in yellow correspond to crystals from BTCP, with purple
indicating SIC. (Bottom) Irradiated crystals.

An additional advantage to the corner-shooting scheme is that the ERM method

could be generalized to extract multiple values of α at once. Instead of the energy of

a single crystal or 5 × 5 matrix the energy of the electron is estimated from a 6 × 6

matrix of crystals centered on the four irradiated ones. The total energy of these
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crystals, E36, is corrected from the laser measurement making its value dependent on

the four central-crystal α values, and the energy resolution is minimized as a function

of all their values simultaneously through a conjugate gradient-descent numerical

minimization. The correlation between the α values measured with the correlation

method and the four-crystal ERM approach are shown in figure 4.15 along with the

distribution of α values for the BTCP crystals measured. The measurements from

each method are in agreement, with more precise measurements following from the E36

four-α ERM approach. This is an important demonstration of the ERM approach

being applied to multiple crystals simultaneously, indicating that the prospect for

generalizing the method for an in situ α determination is good. The spread in α

among the different BTCP crystals is as expected, ∼10%. The evaluation of the laser

monitoring correction in section 4.2.5.1 indicates that not measuring each crystals α

parameter independently will have an adverse effect on the ECAL energy resolution,

with the 10% uncertainty in α when using one common value growing in significance

with increasing transparency changes.
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Figure 4.15: (Left) Correlation between values of α measured for endcap crystals
using the fit method (correlation plot) and the minimization method (ERM) which
measures α for the four central crystals simultaneously. (Right) Distribution of mea-
sured crystal α values for BTCP ECAL endcap crystals from test beam 2007 from
ERM method. Values are corrected for the transverse orientation of light injection
fibers to the dose profile (see section 4.2.6.1).

4.2.6.1 Effect of Fiber Geometry on the Measurement of α

In the 2007 test beam irradiations the beam center was aligned at the corner of

four crystals. For endcap crystals, the laser light injection fibers are located at a

specific corner, rather than in the center of the crystal face, as for the barrel. As a
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result, the transverse dose profile has an orientation w.r.t. this fiber that is different

for each crystal depending where the fiber is located. We identified four classes of

orientations, corresponding to the fiber being located in the same corner of the crystal

as the irradiation dose (denoted “1”), the fiber being located in the opposite corner

( denoted “2”) and the fiber being located in an adjacent corner (“0” and “3”). The

adjacent corner orientation is further separated into two classes by the orientation of

the crystal w.r.t. to the beam, which affects the dose profile w.r.t. the fiber. The raw

measured α values for these different orientation classes are shown in figure 4.16.
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Figure 4.16: Measured α values for BTCP crystals in the 2007 test beam separated
by fiber/dose orientation. (Top) All crystals. (Center left) Class 0. (Center right)
Class 1. (Bottom left) Class 2. (Bottom right) Class 3.

We observe that the spread in α values within each orientation class is significantly



60

smaller than the spread over all the crystals, indicating that the different orientations

result in a systematic change in the measured α value. This suggests that laser

light sampling of the crystal is geometrically biased by where the light is injected,

whereas the scintillation light from electromagnetic showers uniformly samples the

whole crystal bulk, effectively experiencing different densities of color centers. This

effect will not be present in in situ conditions, where the transverse gradient of the

dose profile over a single crystal is negligible.

This effect is corrected for by normalizing the values from each separate class such

that the mean of that individual distribution is equal to the mean from figure 4.16,

yielding the distribution shown in figure 4.15. There are still residual effects from this

dose/fiber orientation shift present in this corrected result, due to the fact that this

should be a continuous correction, since the beam was asymmetric and not perfectly

oriented at the corner of the four crystals. The larger spread in classes 1 and 2

(same corner/opposite corner) reflect this, since for these orientations the amount

of transmission change (darkening) that the laser light samples is more sensitive to

systematic misalignment of the beam in the corner of the four crystals, and any time

dependent shift in the beam profile.
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4.3 Electron Reconstruction

In a collision event, the signals from each ECAL crystals’ photomultiplier are digitized

by a sampling ADC, resulting in a series of 10 samples separated by 25 ns [51], each

indicating the collected charge from the crystal’s APD in that time slice. The ampli-

tude of the signal is reconstructed from these samples [52] using a linear combination

of their amplitudes: A =
∑

j wj · Sj, where Sj is the sample value in ADC counts

and wj is a weight, optimized using the measured average pulse shape. The pulse

amplitude Ai, in ADC counts, of each crystal i is then multiplied by an ADC-to-GeV

conversion factor G, which is measured separately for EB and EE crystals, and a

crystal-by-crystal intercalibration constant Ci.

Since the lateral size of ECAL crystals are approximately one Moliere radius, the

electromagnetic showers from incident particles generally spread over a few crystals

in the lateral plane over the face of the ECAL. The ECAL clustering algorithm be-

gins with the formation of “basic clusters” corresponding to local maxima of energy

deposits. Due to the silicon tracker material in front of the ECAL (ranging from

one to two radiation lengths depending on η) electrons and positrons will undergo

Bremsstrahlung, with the magnetic field spreading this radiated energy in the φ di-

rection. This energy is recovered through the formation of superclusters (SC), which

are formed from groups of nearby basic clusters, extending further in φ in order to

include clusters from radiated photons. In the barrel, this supercluster algorithm is

called the “hybrid” algorithm, and is described in Ref. [53]. Due to differences in ge-

ometry, clustering in the EE and ES uses a slightly different algorithm, which merges

together fixed-size 5 × 5 crystal basic clusters.

At this stage, the energies of superclusters are corrected to account for poten-

tial unclustered energy resulting from shower leakage Bremsstrahlung losses. These

corrections are dependent on the type of the particle, its momentum, direction and

impact point position. The supercluster energy can be expressed as

Ee,γ = Fe,γ ·
[
G ·
∑

i

Si(t) · Ci · Ai + EES
]
, (4.20)
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where the sum is over the crystals i belonging to the supercluster, Si(t) is the laser

monitoring correction for crystal transparency changes and the factor Fe,γ represents

the supercluster energy correction. For endcap superclusters the preshower energy

EES is also added.

Electron reconstruction proceeds by combining these energy-corrected superclus-

ters with tracks reconstructed in the silicon tracker (section 3.3.1). This is performed

by two complementary algorithms, where electrons are either seeded from ECAL su-

perclusters or from tracks. In the former, the supercluster position is used to select

pairs or triplets of hits in the innermost tracker layers in order to initiate the elec-

tron track reconstruction. The latter uses tracks as seeds and tries to match them

to ECAL clusters by extrapolating the track measurement to the face of the ECAL.

Regardless of the electron seed provenance, all the selected elements (track+SC) are

used to reconstruct the electron tracks using including a modeling of the energy loss

in the tracker material and a Gaussian Sum Filter (GSF) to fit the trajectories [53].

Electron candidates are built from the combination of ECAL superclusters and

their associated GSF tracks and the properties of both, and their interconsistency, are

used to identify electrons. The electron candidate’s quality is based on the shower

shape, its track/supercluster position and momentum agreement, and its isolation

relative to signals in each of the subdetectors.

Shower shape

The shape of the energy shower in the ECAL and HCAL, reconstructed using

the granularity of both detectors, is a good discriminator between energy deposition

resulting from electromagnetic particles and those following from the hadronization

of jets.

• HCAL/ECAL energy ratio The large number of radiation lengths covered

by each ECAL crystal indicates that electromagnetic showers are unlikely to

leak through the back of the crystal into the HCAL. As a result, the ratio of

the electron’s supercluster energy to that measured behind the electron in the

HCAL, H/E, can be used to reject fake candidates.
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• Shower moment: The shape of the ECAL supercluster can be used to identify

candidates that are likely to result from electrons by looking at the distribution

of energy through the crystals forming the cluster. The covariance σiηiη is

defined as

σ2
iηiη =

∑5×5
i (ηi + ηseed − ¯η5×5)2wi∑5×5

i wi
, (4.21)

where the sum i is over the crystals in the cluster, Ei and ηi are the energy

and pseudorapidity of the ith crystal and wi = max(0, 4.7 + log(Ei/ESC) is an

energy-dependent weight (the same used in the determination of SC position).

Small σiηiη is indicative of the tightly clustered signature of an electron or photon

while larger values show a more diffuse structure consistent with jet hadroniza-

tion products. The η-direction covariant is used because it is not affected by

shower-spreading in the azimuthal direction resulting from the magnetic field.

Track cluster comparison

Fake electron candidates can be rejected by requiring that the track and super-

cluster measurements of the electron momentum are consistent.

• Position consistency: Tracks are extrapolated to the face of the ECAL and

the difference in angle, ∆η = ηSC − ηtrack and ∆φ = φSC − φtrack, is calculated.

• E/p: The ratio of ECAL cluster energy to track momentum should be in agree-

ment for real electrons.

Isolation

The energy and momentum deposits measured from the subdetectors in the vicin-

ity of electron candidates can be examined for traces of particles produced with

the electrons, whose presence is indicative of particles coming from jets rather than

promptly from, for example, W and Z bosons.
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• Tracker isolation: Tracks in a cone around the electron candidate of ∆R =
√

∆η2 −∆φ2 = 0.3 are selected, excluding those within ∆R < 0.04 and also

those falling in an η − φ = 0.015 × 0.4 strip to remove the electron track and

deposits from photon conversions, respectively. The scalar sum of the pT of

these tracks corresponds to the tracker isolation.

• ECAL isolation: The sum of transverse energies of ECAL cells in a ∆R = 0.3

cone around the candidate are summed, excluding the region ∆R < 0.06 and

an η − φ = 0.04× 0.4 strip.

• HCAL isolation: The sum of transverse energies of HCAL cells in a ∆R = 0.3

cone around the candidate are summed, excluding the region ∆R < 0.015.
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Chapter 5

Jets, Missing Transverse Energy,
and the CMS HCAL

5.1 The CMS Hadron Calorimeter

The CMS detector must be able to reconstruct all of the particles produced in LHC

pp collisions and, given the strongly interacting partons, many of these particles will

be quarks and gluons which will hadronize into jets of particles. The CMS detector

includes many interaction lengths of material in order to stop these particles and

measure their energies. These measurements, along with the geometry and granularity

of the HCAL, can be used to reconstruct the the momenta of jets appearing in collision

events.

Hadrons are detected and reconstructed using the CMS hadron calorimeter (HCAL).

The HCAL is composed of several subdetectors, covering different intervals of pseu-

dorapidity and interaction depths. The HCAL barrel (HB) covers |η| < 1.3 and sits

between the ECAL barrel and the solenoid’s magnetic coil (1.77 m < R < 2.95 m)

with HCAL endcaps (HE) placed on either side behind the those of the ECAL, cover-

ing |η| < 3. Beyond that is the forward hadron calorimeter (HF), which completes the

CMS calorimetric coverage to |η| = 5.2. In addition to geometric coverage, the HCAL

system must also have enough stopping power to measure the full shower energies of

incident hadrons. This is accomplished with the outer hadron calorimeter (HO) which

is placed outside of the solenoid in front of the barrel muon systems. Between the full



66

HCAL detector, illustrated in figure 5.1, and the magnetic solenoid the material be-

tween the interaction point and the back of the HCAL detectors constitutes between

12 and 17 interaction lengths.

2008 JINST 3 S08004

HF

HE

HB

HO

Figure 5.1: Longitudinal view of the CMS detector showing the locations of the hadron barrel
(HB), endcap (HE), outer (HO) and forward (HF) calorimeters.

Table 5.1: Physical properties of the HB brass absorber, known as C26000/cartridge brass.

chemical composition 70% Cu, 30% Zn
density 8.53 g/cm3

radiation length 1.49 cm
interaction length 16.42 cm

(∆η ,∆φ) = (0.087,0.087). The wedges are themselves bolted together, in such a fashion as to
minimize the crack between the wedges to less than 2 mm.

The absorber (table 5.2) consists of a 40-mm-thick front steel plate, followed by eight 50.5-
mm-thick brass plates, six 56.5-mm-thick brass plates, and a 75-mm-thick steel back plate. The
total absorber thickness at 90◦ is 5.82 interaction lengths (λI). The HB effective thickness increases
with polar angle (θ ) as 1/sinθ , resulting in 10.6 λI at |η | = 1.3. The electromagnetic crystal
calorimeter [69] in front of HB adds about 1.1 λI of material.

Scintillator

The active medium uses the well known tile and wavelength shifting fibre concept to bring out the
light. The CMS hadron calorimeter consists of about 70 000 tiles. In order to limit the number of
individual elements to be handled, the tiles of a given φ layer are grouped into a single mechanical
scintillator tray unit. Figure 5.5 shows a typical tray. The tray geometry has allowed for construc-
tion and testing of the scintillators remote from the experimental installation area. Furthermore,
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Figure 5.1: Longitudinal cross section of a quadrant of CMS, with the HCAL sub-
detectors HB, HE, HO and HF labelled. Interaction point is in the lower left corner.
Dashed lines correspond to constant pseudorapidity.

5.1.1 Barrel Hadron Calorimeter

The HB is a sampling calorimeter composed of alternating layers of brass absorbers

and plastic scintillating tiles. It consists of 36 azimuthal wedges which form two half

barrels, one on either side of the interaction point, as shown in figure 5.2 (left). Each

of these wedges is further divided into four azimuthal sectors, giving a granularity

of ∆φ = 0.087. In the longitudinal direction, the plastic scintillators are divided

in 16 intervals, constant in the interval of pseudorapidity they cover, which yields a

granularity of ∆η = 0.087, matching the azimuthal direction.

Each HB module has either 12 or 13 layers of 3.7 mm thick plastic scintillators,

which are radiation hard. Between each of these layers are brass plates between 50.5

mm and 56.5 mm thick, increasing at larger radial distances from the beam line. The

front and back plates are made of 40 and 75 mm thick steel, respectively. The layout
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Table 5.2: Absorber thickness in the HB wedges.

layer material thickness
front plate steel 40 mm
1-8 brass 50.5 mm
9-14 brass 56.5 mm
back plate steel 75 mm

Figure 5.3: Numbering scheme for the HB wedges. Wedge 1 is on the inside (+x direction) of the
LHC ring.

The HB baseline active material is 3.7-mm-thick Kuraray SCSN81 plastic scintillator, chosen
for its long-term stability and moderate radiation hardness. The first layer of scintillator (layer 0)
is located in front of the steel support plate. It was originally foreseen to have a separate read-
out [108] and is made of 9-mm-thick Bicron BC408. The scintillators are summarized in table 5.3.
The purpose of layer zero is to sample hadronic showers developing in the inert material between
the EB and HB. The larger thickness of layer 16 serves to correct for late developing showers
leaking out the back of HB.

A tray is made of individual scintillators with edges painted white and wrapped in Tyvek
1073D which are attached to a 0.5-mm-thick plastic substrate with plastic rivets. Light from each
tile is collected with a 0.94-mm-diameter green double-cladded wavelength-shifting fibre (Kuraray
Y-11) placed in a machined groove in the scintillator. For calibration purposes, each tray has 1-mm-
diameter stainless steel tubes, called source tubes, that carry Cs137 (or optionally Co60) radioactive
sources through the center of each tile. An additional quartz fibre is used to inject ultraviolet
(337 nm) laser light into the layer 9 tiles. The top of the tray is covered with 2-mm-thick white
polystyrene. The cover is grooved to provide routing paths for fibres to the outside of the tray and
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Figure 5.4: Isometric view of the HB wedges, showing the hermetic design of the scintillator
sampling.

Figure 5.5: Scintillator trays.

also to accommodate the tubes for moving radioactive sources.
After exiting the scintillator, the wavelength shifting fibres (WLS) are spliced to clear fibres

(Kuraray double-clad). The clear fibre goes to an optical connector at the end of the tray. An optical
cable takes the light to an optical decoding unit (ODU). The ODU arranges the fibres into read-out
towers and brings the light to a hybrid photodiode (HPD) [109]. An additional fibre enters each
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Figure 5.2: (Left) Illustration of transverse slice of HB with individual wedges num-
bered. (Right) Schematic view of an HB wedge, with design on scintillator sampling.

of an HB wedge is shown in figure 5.2 (right).

When particles are incident on the HCAL their shower develops in the absorber

plates, while the energy of the particles produced in the shower are measured in the

plastic scintillators. The scintillator light is collected with wavelength shifting fibers

which brings the light to a hybrid photodiode [54], which has a gain of about 2000.

5.1.2 Endcap Hadron Calorimeter

The HE endcaps cover a large solid angle (13.2%) and as a result have a large particle

flux, with approximately 34% of particles produced in LHC collisions falling in that

interval. The same radiation-hard detector technology as the HB is used, with al-

ternating layers of plastic scintillators connected to HPDs and brass absorber plates.

Each HE layer is set at fixed distance from the interaction point along the beam line,

meaning that the cells are arranged perpendicularly to the HB. As shown in figure 5.3

(left), the azimuthal granularity of the HE is the same as for the HB. The HE and

HB sub-detectors are designed to overlap in pseudorapidity in the transition region

between the two detectors in order to prevent gaps in geometrical coverage.

There are 17 layers of 9 mm thick scintillators in each HE unit, interleaved with

79 mm thick brass plates as shown in figure 5.3 (right). The HE constitutes about

10 interaction length for particles coming from the interaction vertex. Given the
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Figure 5.11: Hadron endcap (HE) calorimeter mounted on the endcap iron yoke.

5.2 Endcap design (HE)

The hadron calorimeter endcaps (HE) [108] cover a substantial portion of the rapidity range,
1.3 < |η | < 3 (13.2% of the solid angle), a region containing about 34% of the particles produced in
the final state. The high luminosity of the LHC (1034 cm−2 s−1) requires HE to handle high (MHz)
counting rates and have high radiation tolerance (10 MRad after 10 years of operation at design
luminosity) at |η | � 3. Since the calorimeter is inserted into the ends of a 4-T solenoidal magnet,
the absorber must be made from a non-magnetic material. It must also have a maximum number of
interaction lengths to contain hadronic showers, good mechanical properties and reasonable cost,
leading to the choice of C26000 cartridge brass. The endcaps are attached to the muon endcap yoke
as shown in figures 5.11 and 5.12. Only a small part of the calorimeter structure can be used for
the fixation to the magnet iron, because the majority of the space between HE and muon absorber
is occupied with muon cathode strip chambers. A 10-t electromagnetic calorimeter (EE) with a
2-t preshower detector (ES) is attached at the front face of HE. The large weight involved (about
300 t) and a strict requirement to minimize non-instrumented materials along particle trajectories,
has made the design of HE a challenge to engineers. An interface kinematic scheme was devel-
oped in order to provide precise positioning of the endcap detectors with respect to the adjacent
muon station, and to minimize the influence of deformation under magnetic forces. The interface
kinematic contains a sliding joint between the interface tube, and HE back-flange and the hinge
connection between brackets and the iron disk (YE1). Structural materials used in the interface
system are non-magnetic in order not to distort the axial magnetic field of up to 4 T.
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Figure 5.18: Longitudinal and angular segmentation of the HE calorimeter. The dashed lines point
to the interaction point.
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Figure 5.3: (Left) Illustration of HE endcap mounted on iron yoke, with transverse
and longitudinal views. (Right) Diagram of longitudinal HE view, with layer segmen-
tation shown as red and blue lines. Dotted lines point towards the interaction point
and indicate the segmentation of separate HE towers.

geometry of the HE, the effective granularity of the individual cells changes from

∆η ×∆φ = 0.087× 0.087 in the region |η| < 1.6 to ∆η ×∆φ ∼ 0.17× 0.17 at larger

pseudorapidity.

5.1.3 Outer Hadron Calorimeter

In the barrel region the HB covers between 5.82 and 10.6 interaction lengths, depend-

ing on the polar angle relative to the interaction point. In order to complement this

coverage, an outer hadron calorimeter (HO) is placed outside of the solenoidal mag-

net in order to catch the tails of hadronic showers that are not contained in the HB

alone. With a contribution from the solenoidal coil of 1.4/ sin(θ) interaction lengths,

the HO gives the depth of CMS in the |η| < 1.3 barrel region to between 12 and 17

interaction lengths, depending on η. The HO is composed of one (two) cylindrical

layers of scintillating fibers located outside (outside and inside) of a 19.5 cm thick

piece of iron at a radial distance of four meters from the beam line. The HO geometry

matches that of the barrel muon system, with five separate wheels at different fixed

distances along the beam line. Only the HO for the central ring has two scintillator

layers. Each of these rings has 12 segments in φ and six longitudinal slices, roughly

matching the granularity of the HB. An illustration of the HO detector in CMS is
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shown in figure 5.4.
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Figure 5.19: Longitudinal and transverse views of the CMS detector showing the position of HO
layers.

5.3 Outer calorimeter design (HO)

In the central pseudorapidity region, the combined stopping power of EB plus HB does not provide
sufficient containment for hadron showers. To ensure adequate sampling depth for |η | < 1.3, the
hadron calorimeter is extended outside the solenoid with a tail catcher called the HO or outer
calorimeter. The HO utilises the solenoid coil as an additional absorber equal to 1.4/sinθ interaction
lengths and is used to identify late starting showers and to measure the shower energy deposited
after HB.

Outside the vacuum tank of the solenoid, the magnetic field is returned through an iron yoke
designed in the form of five 2.536 m wide (along z-axis) rings. The HO is placed as the first
sensitive layer in each of these five rings. The rings are identified by the numbers −2, −1, 0,
+1, +2. The numbering increases with z and the nominal central z positions of the five rings are
respectively −5.342 m, −2.686 m, 0, +2.686 m and +5.342 m. At η = 0, HB has the minimal
absorber depth. Therefore, the central ring (ring 0) has two layers of HO scintillators on either side
of a 19.5 cm thick piece of iron (the tail catcher iron) at radial distances of 3.82 m and 4.07 m,
respectively. All other rings have a single HO layer at a radial distance of 4.07 m. The total depth
of the calorimeter system is thus extended to a minimum of 11.8 λI except at the barrel-endcap
boundary region.

The HO is constrained by the geometry of the muon system. Figure 5.19 shows the position
of HO layers in the rings of the muon stations in the overall CMS setup. The segmentation of these
detectors closely follows that of the barrel muon system. Each ring has 12 identical φ -sectors.
The 12 sectors are separated by 75-mm-thick stainless steel beams which hold successive layers of
iron of the return yoke as well as the muon system. The space between successive muon rings in
the η direction and also the space occupied by the stainless steel beams in the φ direction are not
available for HO. In addition, the space occupied by the cryogenic “chimneys” in sector 3 of ring
−1, and sector 4 of ring +1 are also not available for HO. The chimneys are used for the cryogenic
transfer lines and power cables of the magnet system. Finally, the mechanical structures needed to
position the scintillator trays further constrain HO along φ .
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Figure 5.4: Longitudinal (left) and transverse (right) views of the HO detector, with
different layers labeled.

The radial size of the HO is restricted by the muon system, with only 40 mm

for the detector. In addition to an aluminum support structure, this leaves 16 mm

for the detector layer, with 10 mm thick active scintillators. Like the HB and HE,

scintillation light is collected by a wavelength shifting fiber and measured in HPDs.

5.1.4 Forward Hadron Calorimeter

In the far forward region, the LHC particle flux reaches unprecedented level at a par-

ticle detector, meaning that the components of the forward hadron calorimeter (HF)

must be extremely radiation resistant. The scintillator-tile/wavelength-shifting fiber

paradigm used in the other HCAL subdetectors would not withstand the expected

LHC radiation rates, particularly up to |η| = 5 where 500 fb−1 of data would result in

the HF experiencing ∼MGy of integrated dose [55]. For this reason, radiation-hard

quartz fibers are used as the HF active material.

The HF consists of a steel absorber composed of 5 mm thick plates. Through the

full depth of this absorber (165 cm ∼ 10 interaction lengths) run long quartz fibers,

with smaller one starting at 22 cm from the front of the detector. Each of these fibers

is 600 µm in diameter for the fused-silica core, extending to 800 µm with polymer

hard-cladding and a protective acrylate buffer. When charged particles from showers

in the steel absorbers pass through the fibers above the Cherenkov threshold (E ≥ 190

KeV for electrons in this material) Cherenkov light is produced. This implies that
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the HF is sensitive mostly to the electromagnetic component of showers [56], and the

short and long quartz fibers can be used in conjunction to distinguish showers coming

from electrons and photons from those of other particles.

Located 11.2 m from the interaction point, the HF is a cylindrical steel structure

with an outer radius of 130 cm and extending within 12.5 cm of the beam line. It

is subdivided azimuthally into 18 modular wedges, with a set of wedges on each side

of the interaction region. The quartz fibers run parallel to the beam line and are

grouped to form towers with granularity ∆η ×∆φ = 0.175× 0.175.

5.2 Jet Reconstruction

The energy depositions left by particles in the ECAL and HCAL are used to build

representations of hadron jets by clustering them together. Each 5× 5 cell of ECAL

crystals is matched to single cells in either the HB or HE to form calorimeter towers

(CaloTowers) which are the input to the clustering algorithm. Each CaloTower is

interpreted as a massless particle with energy equal to the sum of measured energies

in the constituent ECAL and HCAL cells. The direction of the CaloTower is assigned

using the projective CMS geometry, assuming that the particles traveled from the

interaction point. Section 5.4 discusses optimization schemes for this momentum

assignment using reconstructed primary vertices in the event and the shape of showers

within the CaloTowers.

The CaloTowers are clustered into jets using the anti-kT clustering algorithm [57]

with a size parameter R = 0.5 in the η − φ space, implemented in the FastJet

package [58, 59]. The clustering is performed by four-momentum summation, such

that each jet is the sum-total of all its constituents. The energies of these jets is

then for corrected with jet-energy-scale (JES) factors derived from data. These are

especially important in accounting for the energy lost in the noncompensating HCAL

and the variable material budget between the interaction point and the calorimeters.

In 2011 running, the high instantaneous luminosity meant that single events can

contain many interactions, leading to lower energy particles from softer interactions
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biasing the reconstruction of jet energies coming from the primary interaction. This

effect is corrected for by use of the FastJet pile-up subtraction algorithm. Here, the

average energy density in η− φ-space is calculated from the collection of CaloTowers

used to cluster the jets. The area of each jet is then estimated, and its energy

is corrected by an amount equal to the product of its area and the event energy

density. Analyses using these jets (see sections B.7 and C.6) have demonstrated that

this subtraction approach renders kinematic observables calculated from these jets

momenta insensitive to pile-up conditions.

The performance the jet reconstruction algorithm is measured in samples of QCD

multijet events using the dijet asymmetry method [60]. This approach exploits mo-

mentum conservation in the transverse plane for dijet events, using the imbalance

of the jets as an estimator of the two jets’ resolutions. The idealized topology of

exactly two jets recoiling perfectly against each other in an event is violated by ad-

ditional activity from the underlying event, soft radiation or lost energy from jet

fragmentation effects. For dijet momentum balance, these effects are accounted for

by measuring the dependence on extra event activity and extrapolating to zero con-

tribution. The results of the asymmetry measurements from QCD multi-jet data are

shown in figure 5.7.

5.3 Missing Transverse Energy Reconstruction

The presence of weakly interacting particles in collision events is inferred by appealing

to conservation of momentum in the transverse plane of LHC collisions. By looking at

the transverse balance of all of the reconstructed energy and momentum appearing in

the detectors, the transverse momentum of any weakly interacting particles is inferred.

The estimate of this quantity is denoted missing transverse energy (MET),1 and it is

defined as the negative vectorial sum of the momenta of all measured constituents in

1MET is a misnomer, since it is a vectorial quantity representing momenta. Historically, it has
been calculated from the measured energies in calorimeters.
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Figure 5.5: (Left) Jet resolution measured using the asymmetry method for jets
in |η| < 0.5. The reconstruction-level (green circle) and particle-level (magenta dia-
mond) results are shown together with the final measurement (blue square), compared
to the generator-level MC (denoted as MC-truth) derived resolution (red triangle).
(Right) Relative systematic uncertainty of the asymmetry method.

the final state

~MET = −
∑

i

~p i
T , (5.1)

where the sum is over all of the momentum reconstructed in the detector. Since a large

portion of final state particles are neutral, and cannot be measured in the tracker, the

ECAL and HCAL are of primary importance in MET reconstruction. A measurement

of MET can proceed from the collection of the CaloTower constituents that are used

to cluster jets, or by considering a different representation of the energy measured

in the detector. In the studies described in this thesis, MET is reconstructed using

the particle-flow algorithm [61,62] which attempts to construct every particle present

in the collision event individually. Charged hadrons, electrons and muons are recon-

structed from tracks in the tracker matched to the relevant calorimeters while photons

and neutral hadrons are reconstructed from energy clusters separated from the ex-

trapolated positions of tracks in ECAL and HCAL, respectively. A neutral particle

overlapping with charged particles in the calorimeters is identified as a calorimeter
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energy excess with respect to the sum of the associated track momenta. The energy

of charged hadrons is determined from a combination of the track momentum and

the corresponding ECAL and HCAL energy, corrected for zero-suppression effects,

and calibrated for the nonlinear response of the calorimeters. Finally, the energy

of neutral hadrons is obtained from the corresponding calibrated ECAL and HCAL

energy.

By identifying each particle independently, calibrations are applied according to

the particle type which allows the effective resolution of the HCAL measurements to

be improved through use of the more-precise silicon tracker measurements. Similarly,

the identification of photons, electrons and muons allows for particle-specific energy

calibrations to be applied. This results in an improved MET resolution, in both scale

and direction, relative to the calorimeter-only based analogue.

The performance of the PF MET measurement was evaluated in the earliest data

from 2010, corresponding to about 10 nb−1 of 7 TeV collision data. During this early

run period the low instantaneous luminosity allowed for low-prescale minimum bias

triggers. In this dataset, the vast majority of events feature low
√
ŝ QCD, where

there are no intrinsic sources of hard, weakly interacting particles. This implies that

the MET measured in these events is reflective of the MET resolution, which is larger

than smaller effects that would cause the true transverse momentum imbalance to

deviate from exactly zero in these minimum bias events. The PF MET distribution

from this early data is shown in figure 5.6. The MET resolution depends strongly

on the scalar sum of the measured energy of the particles used to calculate it. This

is due to the fact that this resolution depends on the individual resolutions of the

detectors used to calculated MET, which in turn depend on the total energy rather

than the magnitude of its imbalance. Since MET is a vectorial quantity, it is usually

decomposed into two scalar quantities by projecting it along two perpendicular axes

in the transverse plane. The MET projected along the CMS x and y coordinate

axes is shown in figure 5.6. The width of the distribution for this scalar quantity is

indicative of the MET resolution. A more useful decomposition can be performed,

event by event, along the axes parallel and perpendicular to the transverse thrust
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Figure 3: Particle Flow MET, its x and y components, and the total PF particle energy sum, for minimum events
collected at

√
s =7 TeV and comparison with the correspondingMonte Carlo Simulation.

3

Figure 5.6: PF MET distributions measured from early 2010 data. (Left) Magni-
tude of the scalar sum of PF particle transverse momenta. (Right) Magnitude of
the PF MET. (Bottom) PF MET magnitude projected onto the x and y directions,
respectively.

axis. At larger scalar energy sums, many events will show characteristics of QCD dijet

events, where the energy in the event is collimated along one axis in the transverse

plane. This transverse thrust axis can be calculated using the precision silicon tracker

by maximizing the quantity

TT = max
φTT

∑
i |piT cos(φTT − φi)|∑

i p
i
T

, (5.2)

where the sum i is over the tracks in the event with transverse momentum piT and

azimuthal angle φi. TT is the event thrust and φTT represents the transverse thrust

axis. The MET can be projected along these two axes into a TT parallel (MET‖)

and perpendicular (MET⊥) component

MET‖ = ~MET · n̂TT , MET⊥ =
√
| ~MET|2 −MET2

‖ , (5.3)
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where n̂TT gives the direction of the transverse thrust axis. The parallel MET com-

ponent’s resolution, with increasing scalar energy, is most sensitive to the calorimeter

noncompensating response to jets and its resolution. Conversely, the perpendicular

component depends strongly on the noise in the calorimeters. The resolution of PF

and calorimeter-only MET, as a function of the calorimeter scalar energy sum, are

shown in figure 5.7 for the first CMS 7 TeV data.

– using the transverse Thrust (TT) axis, calculated with tracks only. This is the axis of the highest
transverse momentum aligned along it (calculated event by event) as follows:

TT = max
φT T

�
i |pi

T cos(φTT − φi)|�
i pi

T

(1)

We use only “high-quality” tracks in the above determinations of the axes. When there is calorimetric activity
due to particles produced in the collisions, it is more likely to be along these “physics preferred axes”. We
use the official 7 TeV data samples of the jetMET POG and the corresponding recommended noise cleanup
[?].

3 MET components resolution
The E miss

T in the min-bias events is decomposed into two orthogonal components, denoted MET⊥ and
MET� and corresponding to the E miss

T components perpendicular and parallel to the leading track or TT
direction respectively:

MET� = �E miss
T · �pTT

T /|�pTT
T | , MET⊥ =

�
| �E miss

T |2 − |MET�|2 (2)

E miss
T denotes the raw (uncorrected) calorimetric missing transverse energy. An advantage of this decom-

position is the use of the tracking in determining the axis of reference to project calorimeteric measurements.
Tracking provides a highly resolved direction of the momentum in the event orthogonal in terms of calorime-
try. The paralller component of the calorimteric transverse energy is dominated by the calorimeter response
to energy deposition while the perpendicular component is dominated by the ambient calorimeter noise.
In reference [1] we have seen that the data collected at

√
s=900 GeV and

√
s=2360 GeV LHC runs are

dominated by noise.
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Figure 7: Resolution ofMET� andMET⊥ as a function of the nominal calorimetric transverse energy scalar sum.
Events collected at

√
s = 7 TeV and comparison with MC.

The perpendicular and parallel components resolution are shown in Fig. 7 for a calorimetric-only missing
transverse energy measurement. In both components the data-MC agreement is satisfactory. There is a pure
noise component of the resolution at the low SumET and a resolution component encapsulating the response
of the calorimeter to higher energy deposits at the higher SumET.
The ones for PfMET are shown in Fig. 9 plotted with respect to the nominal scalar sum of the calorimeteric
tranverse energy– this is for purposes of algorithm comparison with respect to the same canonical calori-
metric transverse energy sum. The components resolution for PfMET are also shown with respect to the
corresponding event PF scalar sum of tranverse energy in Fig. 8. Since the PF quantity is hybrid in terms
of the detectors measurements entering it (both in pfMET and pfSumET) these plots are not capturing the
calorimteric response only.
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Figure 8: Resolution ofPfMET� and PfMET⊥ as a function of the “PF event” transverse energy. Events collected
at
√

s = 7 TeV and comparison with MC.
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Figure 9: Resolution of PfMET� and PfMET⊥ as a function of the nominal scalar sum of transverse energy in all
the calorimeters. Events collected at

√
s = 900 GeV and comparison with MC.

8

Figure 5.7: MET resolution as a function of the scalar sum of calorimeter energy in
the event. (Top) MET from calorimeter measurements only. (Bottom) PF MET.

The PF improved over the calorimeter-only approach in resolution, although not

to the magnitude predicted in simulated events. The calorimeter-only MET perfor-

mance was in reasonable agreement with expectations. This was attributed to the

early calibrations used in the PF reconstruction algorithm for charged and neutral

hadrons. With subsequent calibrations the MET performance was improved, and it

performance measured with the full 2010 CMS dataset [63].
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5.4 Optimization of Momentum Assignment for

Calorimeter Energy Deposits

The projective geometry of CMS associates each calorimeter cell with a position (η,φ)

in pseudorapidity and azimuthal angle, respectively. When jets are clustered from

the energy depositions in these cells, the momentum of these energy depositions are

assigned a direction which implicitly assumes that the jet resulted from an interaction

at the center of CMS, (0,0,0) in (x, y, z) coordinates. This assumption is justified by

the fact that the size of the beam spot is negligible in the transverse plane and small

on the z axis, when compared to the distance of the inner surface of ECAL from

the center of the detector. It is know from previous work at the Tevatron [64] that

an accurate projection of the energy deposits with respect to the true position of

the event vertex is preferable, especially for search analyses based on multiple jets

and/or MET. In particular, by removing the bias induced by incorrectly projecting

the energy deposits to an incorrect interaction vertex, event migration from the core

to the tails of the jet pT and MET distributions can be reduced.

We explore two complementary approaches to improving the direction assignment

to CaloTowers and jets. The first is to correct their direction for the true position of

the primary vertex. As described in section 3.3.2, the position of every interaction

vertex in LHC collisions is reconstructed precisely by the silicon pixel detector and

strip tracker. Effectively, this measurement can be used to improve the position

resolution of the calorimeters. We also consider a momentum assignment scheme

that exploits the added granularity of the ECAL relative to the HCAL cells and

CaloTowers. This variable positioning approach uses the shower shape in the 5 × 5

ECAL grid assigned to each CaloTower in order to improve the position assignment.

We evaluate the effect of applying these improved position-assignment strategies to

the CaloTowers before jet clustering (a priori corrections) or to the clustered jets (a

posteriori corrections). Both correction schemes are found to improve jet position

and energy resolution and reduce biases in their determination.
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5.4.1 Correcting for the Primary Vertex Position

By default, each CaloTower is assigned an ηd and φd coordinate based on its position

with respect to the nominal (0, 0, 0) interaction point. Assuming that the interaction

occurs precisely at this point, this assignment is sufficient, as it uniquely describes the

CaloTowers’ positions on the 2-sphere perpendicular to the nominal interaction point.

When the primary event interaction occurs in a position displaced from the nominal

interaction point these two coordinates are no longer describing the rapidity of the

particles that impact a given CaloTower. We specify the CaloTower’s position in three

dimensions in order to assign its “physics” position on the 2-sphere perpendicular to

the actual event interaction point. More specifically, the position of CaloTowers (and

subsequently the jets clustered from them) can be described as a function of the ηd and

φd coordinate (relative to (0, 0, 0)) and a “depth,” or reference length, specifying the

distance of the CaloTower/jet from the beam line, or the CMS z-axis. The geometry

of a displaced primary vertex is illustrated in figure 5.8.

Figure 5.8: The geometry of a primary event vertex displacement along the CMS z-
axis (beam line). In addition to a value of ηd and φd relative to the nominal interaction
point, an additional parameter, Lref , is necessary to uniquely identify the position of
a CaloTower/Jet.

When the interaction occurs at the point (0, 0, 0) the points ~p1 and ~p2 have an

equivalent ηd and φd, regardless of the reference length, Lref , chosen. This is a



78

direct consequence of the projective geometry of the CMS detector. On the other

hand, when the event primary vertex (denoted as PV in figure 5.8) is displaced from

(0, 0, 0) the resulting value for the corrected η (or θ) coordinate for the CaloTower/jet

depends on the chosen reference length, Lref . This length corresponds to the distance

between the energy depositions and the beam line and essentially requires the entire

CaloTower/jet be described as a single point. Strategies for assigning this reference

length are discussed in section 5.4.2.

Given the dimensions of the beam-spot (large spread on the order of 10 cm in z,

10’s of µm in x/y), we only consider displacements of the primary event vertex in

the CMS z coordinate, which implies that these corrections improve only the η and

pT/ET measurements of the CaloTowers/jets. Significant displacements in the x/y

(transverse) coordinate of the interaction point from (0, 0, 0) should also be corrected

for should they occur. The geometry of this correction implies that central CaloTowers

and jets are more sensitive to the z-coordinate of the primary event vertex position

relative to more forward objects. This effect is demonstrated in figure 5.9. Here, a

toy Monte Carlo was implemented assuming a calorimetry object at each value of

ηd shown. The primary interaction vertex position was varied in z, taken from a

Gaussian distribution with mean 0 and σ = 5.3 cm. Additionally, a reference length

of Lref =159 cm was used for all values of ηd (roughly the back of the ECAL). Given

the relative magnitudes as a function of η, one finds that barrel calorimetric objects’

reconstructed positions are more sensitive to the choice of Lref .

5.4.2 CaloTower and Jet Depth Assignment for PV Correc-

tions

As illustrated in figure 5.8 the correction to CaloTowers/jets is sensitive to the choice

of depth, especially in the barrel region. In principle, the correct choice for this value

would correspond to the distance from the beam line of the intersection between a

line projected from (0, 0, 0) through the detector ηd and φd and the actual trajectory

of the physics object (jet or single particle) from the actual interaction point when the
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Figure 5.9: Toy Monte Carlo study of the event PV smearing around (0, 0, 0). The
z coordinate of the primary vertex is assumed to be normal distributed with mean 0
and σ = 5.3 cm. A reference length, Lref , of 159 cm is used. Points correspond to
the mean of the |ηd − ηcorr| distribution while the error bars correspond to the RMS.

detector has infinite granularity. In practice, it is not possible to determine this point

given the finite granularity of the calorimeters, bending of the charged components

of jets in the magnetic field, and the fact that the calorimeters are designed to be

projective relative to the nominal interaction point. A well-motivated approach would

be to assign Lref according to the location of the longitudinal shower maximum of

the jet/single particle. Unfortunately, for hadronic showers this point varies from

event to event, even at a fixed incident energy for a single hadron. This is due

to, among other things, fluctuations in the starting point of the shower, varying π0

content in the shower and differences in noncompensation between the ECAL and

HCAL components of the CaloTower. One could assign the depth as a function of

the energy and electromagnetic fraction of the CaloTower or jet on an event-by-event

basis. This ratio however strongly depends on the hadronization model chosen when

simulating jets and is sensitive to the relative calibrations of the different components

of the CaloTower (ECAL and HCAL) and their relative energy resolutions. To avoid

introducing sensitivity to these effects we instead identify a “global optimal depth”

which optimizes the results of these corrections. The jet η resolution as a function of η

is shown in figure 5.10 for different choices of this depth. Here, we define“resolution”
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Figure 5.10: Jet η resolution as a function of η for jets with pT > 50 GeV/c and a
priori primary event vertex correction.

as the mean absolute residual. For a Gaussian distribution with mean zero this is

equivalent to σ ×
√

2/π ∼ 0.8× σ. It is calculated from a simulated sample of QCD

multijet events by comparing the reconstructed jet momentum to that of generator-

level jets clustered from the simulated particles in the event. The depth is quoted

as a percentage of the distance between the front of the ECAL (∼140 cm) and back

of the HO (∼410 cm) for the barrel region. Correspondingly, for the endcap region

Lref is defined as a percentage of the distance along the z axis between the front of

the EE and back of the HE (320 cm and 570 cm from (0, 0, 0), respectively). The

optimal choice for this depth is revisited in the context of other position corrections.

5.4.3 Variable Positioning for CaloTowers

In the absence of a displaced event primary vertex, each CaloTower is assigned a de-

fault ηd and φd coordinate. This assignment reflects the granularity of the HCAL cells,

which have roughly a one-to-one correspondence with the CaloTowers. Fortunately,

there is additional position information available from the increased granularity in

ηd and φd of the individual ECAL crystals associated with each CaloTower in the
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barrel and endcap regions. In general, the strategy is to use the granularity of the

ECAL cells in the transverse plane w.r.t. the nominal interaction point in order to

derive an event-by-event variable position for each CaloTower based on ECAL cell

energy depositions. There are a number of ways to implement this strategy, including

not only variations of different parameters but entire formulations. For example, one

could treat each of the CaloTower’s calorimetric cells, ECAL and HCAL, as a separate

four-vectors and combine them in some prescribed way. Depending on the approach

to this four-vector combination, this can lead to massive CaloTowers. Alternatively,

one could use just ECAL cells to determine an ηd and φd for the entire CaloTower,

and set the depth according to some fixed parameter (as described in section 5.4.2) or

as a function of CaloTower electromagnetic fraction, ET , ηd, etc. Such an approach

would, as a result, be sensitive to these calorimeters’ relative calibrations, resolutions

and variations in hadronization and hadronic shower development in the calorimeters.

For the sake of robustness we will consider here only those approaches that use the

ECAL granularity to calculate an ηd and φd coordinate (relative to (0, 0, 0)) and will

assign a value of Lref according to an approximate“global optimization.” With this

formulation, the calculation of the CaloTower positions can be expressed as

ηCT =

∑cells
i ηiwi∑cells
i wi

, φCT =

∑cells
i φiwi∑cells
i wi

, (5.4)

where ηCT and φCT are the positions of the CaloTower in the transverse plane relative

to (0, 0, 0), the sum is over the ECAL cells assigned to the tower, and wi is a cell

weighting factor. With this parameterization, variations include different choices for

the calculation of the weights (energy dependence, η dependence) and restrictions on

which cells are included in the sum (for example, an absolute minimum cell energy

or a cut on the cell energy relative to the total electromagnetic component of the

CaloTower). We consider two different weighting schemes. The first, denoted the

“log-method,” uses logarithmic energy weighting

wi = w0 + log

(
Ei∑
j Ej

)
, (5.5)
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where the sum is over the same ECAL cells summed in equation (5.4) and Ei is

the measured energy of the ith ECAL cell. An additional requirement is that only

positive weights wi are considered, so that the parameter w0 acts as a relative energy

cutoff. Without optimization in the context of the CaloTowers, we use the value

w0 = 4.2, the same as in the assignment of ECAL cluster positions [65], implicitly

including only cells with more than 1.5% of the total electromagnetic energy in the

sum. Furthermore, the “Scheme B” threshold requirements are maintained for all the

CaloTower calorimetric cells.

Thresholds (GeV)
HB HO HE

∑
EB

∑
EE

0.9 1.1 1.4 0.2 0.45

Table 5.1: Scheme B minimum calorimeter energy thresholds for CaloTowers.

The effect on the jet η resolution of varying the value of Lref , for both a priori and

a posteriori primary vertex corrections, is illustrated in figure 5.11 for this variable

positioning scheme. The two types of primary vertex correction result in degenerate

performance. Interestingly, the depth hierarchy is enhanced when using the variable

positioning scheme relative to the fixed positioning case, demonstrating that a value

of depth = 6% is roughly optimal, which is consistent with the “optimal” range for

fixed CaloTower positioning discussed in section 5.4.2. It is clear that this is not

precisely the optimal value for all values of η but also that, in a range of several

percent around this value, η resolution performance is effectively degenerate. Hence,

we choose depth = 6% as a benchmark value. The η distribution for a priori primary

vertex corrected leading jets (pT > 50 GeV/c) is shown in figure 5.12 for fixed and

variable CaloTower positioning, respectively. For fixed positioning, the spikes in the

η distribution are clearly visible, with 54 of them corresponding precisely to the 54

positions of CaloTower η segmentation in this η range. For variable positioning, this

feature is less pronounced, resulting in a much smoother η distribution.

We consider a second formulation for CaloTower position calculation called the
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Figure 5.11: Jet η resolution as a function of η for jets with pT > 50 GeV/c for
(Left) a priori primary event vertex correction and (Right) a priori corrections. A
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CaloTower positioning. (Right) variable positioning.
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“linear-method,” where the ECAL cell weights are chosen as

wi = Ei . (5.6)

With no explicit energy requirements applied to the ECAL cells, this approach is

roughly equivalent to combining the four-vectors of each of the ECAL cells when

deriving the CaloTower position, with either an energy or ET recombination scheme.2

The jet φ and η resolutions for the log-method and linear-method position calculation

approaches are compared in figure 5.13. The two methods perform almost identically

w.r.t. to this metric (and also in position bias). The linear-method performs slightly

better in φ resolution than the log-method while the opposite appears true for η

resolution. One possible explanation for this effect is the difference in the physics

that the two weighting approaches address. The log-method is motivated by the fact

that hadronic and electromagnetic showers can be parameterized with exponential-like

functions for the transverse shower development [66]. Hence the better the transverse

profile of a shower can be described by a single exponential, the better the log-method

will perform. Conversely, the more a shower drops off linearly with radius, the better

the linear-method description will perform. This consideration affects both the η and

φ resolutions. For φ resolution, there is an additional effect due to the bending of

charged particles in the magnetic field which degrades the position resolution and

introduces additional bias. This effect is directly related to the transverse momenta

of the particles and, as a result, is better captured by the linear-method. We proceed

by choosing the log-method as default for the variable positioning scheme, keeping in

mind that marginal improvements from other ECAL weighting approaches could be

achieved.

2Due to the small η range of ECAL cells within each CaloTower the factor 1/cosh(η), which is
applied to translate measured energy to ET , is approximately the same for each ECAL cell.
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Figure 5.13: Jet position resolution as a function of η for jets with pT > 50 GeV/c with
two different variations on the weighting of ECAL cells for the position calculation.
(Left) φ resolution. (Right) η resolution.

5.4.4 Corrected Jet Momentum Resolution and Bias

In figure 5.14 we compare the jet resolution achieved with the different correction

schemes considered: primary vertex corrections, variable CaloTower positioning using

the granularity of the ECAL and schemes where these corrections are performed before

and after jet clustering, respectively. We observe that not correcting for the primary

vertex position results in an appreciable degradation of the jet η resolution, especially

in the central region where the jets’ positions are most sensitive to the geometry of the

correction. The φ resolution is unchanged by this correction. The variable positioning

systematically improves jet position resolution relative to fixed positioning, except in

the region of nontrivial overlap between the HB and HE (|η| ∼ 1.3). With the

exception of this region, which can benefit from a better description of the complicated

ECAL, HB and HE overlap geometry, the improvements from the variable positioning

scheme over fixed positioning are as large as 50% for jets in the calorimeter endcaps.

While jet position resolution is an important metric, it is also essential to ensure

that low position bias is achieved. Not correcting for the primary vertex position

results in a significant position bias as the primary vertex z coordinate deviates from 0,

as demonstrated in figure 5.15. The variable positioning yields lower η bias, although
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this result should be put in the context of figure 5.15 in that negligible bias (relative

to the η resolution) results from correcting for the primary vertex position, regardless

of CaloTower position calculation.
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Chapter 6

The W and Z Boson Standard
Candles

The fact that the W and Z bosons are massive is of tremendous theoretical and

practical importance. These masses regulate the strength of the weak force, allowing

for the hydrogen fusion reaction in the sun and for life to exist. They also indicate that

the gauge symmetries of the SM are broken, through the predicted Higgs mechanism.

For studying LHC collision events these masses are relevant not only because of the

physics these bosons are associated with, but also because of their utility as standard

candles which can be used to calibrate the detectors and measure their performance.

The relatively large masses of the W and Z bosons means that they are an abun-

dant source of isolated, high transverse momentum leptons and neutrinos. Z(``)

events can be used with a tag-and-probe technique, described in section 6.1, to mea-

sure the efficiency of lepton reconstruction algorithms in data, exploiting the Z mass

in selecting events without biasing the measurement. Heavy bosons can also be used

to tag particular event topologies in order to study their other properties. Z(µµ)+jets

events can be used to measure the jet energy scale by using the well-measured Z kine-

matics to calibrate the recoiling jets’ [60]. W (`ν) events provide a control sample of

events with weakly interacting particles which allows for measurements of the MET

performance which and can be selected by identifying the decay lepton.

W and Z bosons, the force carriers of the electroweak part of the SM, can also be

used to study strong interactions by identifying the bosons in events with associated
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jet production. Studies of the scaling behavior of W/Z+jets yields with increasing

number of jets is described in section 6.2, and produces a measurement which directly

test perturbative QCD.

6.1 Lepton ID Efficiency Measurements Using Z(``)

A challenge for validating reconstruction and identification algorithms is doing so for

leptons in events collected from LHC collisions. Simulated events give the benefit

of knowing the true magnitude or identity of every quantity and particle in the,

which provides a simple metric for comparison with reconstructed particles. Such

information is not available in data, where the actual performance must be measured

in order to understand the errors associated with physics analyses. In the case of

lepton identification, the Z boson and its decays can be used as a standard candle

to tune and measure lepton reconstruction performance. As an example, we consider

the tag-and-probe measurement of the lepton identification efficiencies for the SUSY

search analysis described in chapter 10.

From 2011 Z(``) events are selected by requiring that events contain two lepton

candidates, either two electrons or two muons. Furthermore, one of these candidate

(the tag) must satisfy a tight lepton identification requirement and the invariant mass

of the two candidates must be close to the Z pole. This yields a relatively pure sample

of Z(``), which can be used to evaluate the efficiency of identifying the second lepton

candidate (the probe) as good, already knowing that the candidate is likely an actual

lepton from independent information. The efficiencies of the offline lepton selection

are measured using this tag-and-probe approach in 1.55 fb−1 of 2011 7 TeV data in

different kinematic regions (bins in pT and η) which match the granularity of ECAL

for electron and of the muon chambers for the muons.

For Z(ee) events, the electron selection efficiency can be factorized into the two

contributions: the selection requirements involving the invariant mass and for an elec-
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tron to be identified from the probe candidate. After the event selection, the only

requirement on the probe electron is that it has a supercluster with loose properties.

A fit is performed to determine the electron identification efficiency for supercluster

candidates by considering the m(etageprobe) invariant mass distribution. Z(ee) events

are modeled as a signal peak while potential non-Z(ee) backgrounds are represented

as a falling continuum. We assume that peaking events are real electrons, while con-

tinuum events are fake candidates since the contribution from continuum Drell-Yan

di-lepton production is small at these masses relative to the fake contributions from

QCD multi-jet events. These shapes are used to constrain the two contributions in a

maximum likelihood fit, from which the electron identification efficiency is extracted

by simultaneously considering a sample with probes failing identification and those

satisfying it. Two example fits for two η bins of samples with electron probes 20

< pT < 25 GeV/c are shown in figure 6.1.
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Figure 6.1: Distribution of e+e− invariant mass in the electron tag-and-probe sample.
Probes are selected to have 20 < pT < 25 GeV/c and (Left) |η| < 1 and (Right)1.566
< |η| < 2.0. Super-imposed are the likelihood functions from the fit for samples of
passing probes (green), failing probes (red), all probes (blue). Selection applied to
probe corresponding to WP80 electron identification described in section 10.4.

This procedure is repeated for samples from each pT and η bin, and performed sim-

ilarly for a sample of Z(µµ) events to measure muon identification efficiencies. The

measured efficiencies are then compared to values extracted from simulated Z(``)

events, with the same procedure applied. Each pair of these efficiencies are used to
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form data/MC ratios which can be used to correct other simulated events samples

for residual data/simulation differences. The data/MC efficiency ratios measured for

electrons and muons (using the identification criteria from section 10.4) are summa-

rized in figure 6.2.
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Figure 6.2: Offline lepton selection efficiency data/MC scale factors measured in
different pT and η bins for (Left) muons and (Right) electrons in the full 1.55 fb−1

dataset.

6.2 W/Z Production with Associated Jets

With the combined performance of all the subdetectors, CMS has the ability to

efficiently select on-shell W and Z bosons in collision events through their decays to

leptons and neutrinos. This well-controlled signature can be used to tag events with

these bosons and measure other properties of the events in a largely unbiased way, such

as the study of jet production in association with W or Z bosons, providing stringent

tests of perturbative QCD calculations. Such a test can be performed through the

measurement of the W (Z) + n jets cross section, for different n. At present, next-to-

leading-order (NLO) predictions are available for n up to four [67–70] and indicate

that that these cross section exhibit Berends-Giele scaling with increasing n [71–73].
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This hypothetical scaling follows

Cn ≡
σn
σn+1

= α , (6.1)

where σn = σ(W (Z)+ ≥ n jets), and α is a constant. At tree level, this behavior

can be explained by noting that each extra strong emission comes with an additional

factor of αs, the QCD coupling. Hence the ratio of cross sections for different numbers

of emissions should follow a power law related scaling as αn. Recent works show

that this scaling is not altered by fixed order QCD corrections [67, 68] and previous

experimental measurements [74–78] have shown no significant deviation from scaling.

The W (Z) + n jets cross section is not only of theoretical importance, but also of

practical importance for new physics searches where this process constitutes a large

background, such as those described in chapters 9 and 10.

6.2.1 σ(V+ ≥ n jets) Cross Section Measurement Strategy

The CMS measurement of the W and Z + n jet cross sections [79] is performed on 36

pb−1 of 2010
√
s = 7 TeV collision data. In this analysis, the high-pT electrons and

muons fromW and Z decays are used to trigger and select events. The lepton selection

is identical to that described in section 9.4 for the 2010 search for supersymmetry, for

this measurement requiring that each event contains a lepton has a pT > 20 GeV/c.

The efficiency and uncertainties for triggering, reconstructed and identifying leptons

are evaluated using an inclusive (with respect to jet activity) sample of Z(``) events

with a tag-and-probe technique like that described in section 6.1.

The identification requirements on leptons significantly reduce backgrounds from

non-W/Z contributions, particularly isolation requirements which reject events where

leptons are located near other particle activity in the detectors, indicative of leptons

coming from decays in jets. Despite a large rejection factor, a portion of these events

survive the selection. These other backgrounds have a different rate dependence with

requirements on the number of reconstructed jet and, as a result, would bias the

W and Z + n jet cross section measurements if not properly accounted for. To
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Figure 6.3: Di-lepton invariant mass for the Z+ 1 jet samples in the electron channel
(Left) and the muon channel (Right). The fit result for the signal is indicated by
the yellow-filled area while the backgrounds are too small to be seen for this jet
multiplicity.

discriminate between W/Z+jets events and these backgrounds we use the known

masses of the W and Z bosons.

Z(``)+jets event cross sections are measured using an extended maximum-likelihood

fit to the di-lepton invariant mass (M(``)) distribution. As for the tag-and-probe

analysis, the invariant mass provides powerful discrimination between Z(``) events,

which peak with a narrow width at the Z-pole, and other backgrounds which, with-

out on-shell Zs, populate a falling continuum. Example fits for Z + 1 jet samples

are shown in figure 6.3. The contamination from background processes with hard,

prompt leptons are dominated by tt̄ and W+jets and comprises a relatively small

yield, without a peaking structure. The shape of backgrounds without heavy bosons

is determined from a control sample selected with inverted lepton identification and

isolation criteria. These fits are performed independently for exclusive samples with

different numbers of reconstructed jets, where jets are counted according to how many

have |η| < 2.4 and ET > 30 GeV, and are a distance greater than ∆R = 0.3 from the

reconstructed leptons in the event. The η acceptance is limited to the region covered

by the silicon tracker, restricting the analysis to jets that can benefit from tracker

information ffor more precise measurements of jet energy.

Measuring the cross sections of W (`ν)+jets events is more difficult than for Z
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bosons for several reasons. With only one lepton in the final state, backgrounds are

naturally larger without a second lepton requirement to suppress them. Furthermore,

the decay neutrino is weakly interacting and escapes the detector unseen. This means

that the invariant mass of the W cannot be measured directly. There are also other

backgrounds containing W bosons, namely events with top quarks which decay to

Wb. These are predominantly tt̄+jets events, and having at least two jets in the event

means this background grows, relative to W (`ν)+jets, with increasing jet multiplicity.

The first two challenges can be overcome by using an analogue to the invariant

mass suitable for open final states. The measured MET in each event can be inter-

preted as the transverse momentum of the escaping neutrino and, with the measured

lepton, is used to calculate the transverse mass, MT (`ν):

MT (`ν) =

√
2(|~p `

T || ~MET| − ~p `
T · ~MET) , (6.2)

where ~p `
T is the lepton transverse momentum and ~MET is the measured missing

transverse momentum. For W (`ν) events, this variable will have a Jacobian-peaking

structure with a kinematic edge at the W mass, while other backgrounds fall as a

continuum. The transverse mass is a precursor to the razor variables, described in

chapters 9 and 10, which are mass-sensitive variables for studying events with multiple

weakly interacting particles.

Of course, events with top quarks will also have a peaking MT distribution. This

background is controlled by counting the number of b-tagged jets, nb−tagged
jet , appearing

in the event. W (`ν)+jets events contain predominantly light-flavored jets while events

with top quarks will naturally have an enhancement in b-quarks. Hence, the total se-

lected single lepton sample can be organized into two components, one which exhibits

a peaking structure in MT (`ν), dominated by W+jets and tt̄, and another which does

not, dominated by QCD multijet events. Similarly, events with top quarks naturally

contain an enhancement of b-tagged jets while W+jets and QCD events do not. The

yield of each of these three contributions is measured through a two-dimensional fit

to the MT (`ν) distribution and the number of b-tagged jets. Each dimension is used
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Figure 6.4: Fit results for the W (`ν) + n jets sample with n = 1 in the muon final
state (Top) and n = 3 for the electron final state (Bottom). (Left) MT (`ν) projection.
(Right) Number of b-tagged jets projection. Fit results for each signal and background
species in the fit are identified according to color.

to discriminate against each of the background types. The likelihood function is built

under the assumption that there are few b-quark jets in the signal events, meaning

that W events produced in association with heavy-flavor jets are attributed to back-

ground yields. Given the statistical precision of the measurement, this assumption

has a negligible effect on the W+jets cross section result. This fits are performed

using exclusive jet multiplicity bins for n ≤ 3, with the last bin selected inclusively

with n ≥ 4. Examples of these fits are shown in figure 6.4.
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6.2.2 Results

The yields measured for Z(``)+jets and W (`ν)+jets events, in different jet multi-

plicity bins, are corrected for lepton identification efficiencies which can vary with

the number of jets due to isolation requirements. Many of the uncertainties from

these measurements are reduced by considering the V+n jets cross sections relative

to the inclusive W and Z cross sections, σ(V+ ≥ n jets)/σ(V ), and to the (n-1)

jets cross sections, σ(V+ ≥ n jets)/σ(V+ ≥ (n − 1) jets). An advantage of using

ratios is that common uncertainties, like the absolute normalization from integrated

luminosity measurements and the lepton selection and identification efficiencies, can-

cel. The measured V+n jets cross sections are shown in figures 6.5 and 6.6 for W

and Z bosons, respectively. These yields are not the absolute values measured in the

M(``) and MT distributions, but rather are unfolded quantities which account for

the matrix which describes the probability of observing a certain number of recon-

structed jets as a function of the true number of particle-jets in the event, derived

from simulated events. This unfolding contributes to the systematic uncertainties of

the measurements, along with jet-energy-scale uncertainties and associated pile-up

effects.

Finally, these measurements can be used to test the Berends-Giele scaling hypoth-

esis and measure the scaling parameter Cn from equation (6.1). To allow for deviation

from constant scaling due to for example, phase-space effects, a second parameter, β,

is introduced:

Cn = α + β n . (6.3)

The V+jets cross section yields are fit using this parameterization with the measured

values of α and β shown in figure 6.7 for each of the different final stats (W/Z,

electron/muon). The scaling expressed in equation (6.3) is not expected to hold

for n = 0 due to the different production kinematics where no jets recoil against the

vector boson, so it is not included the in the fit. The Berends-Giele scaling hypothesis

is confirmed to work well up to the production of four jets, with the β parameter lying

within one standard deviation from zero for both the W+jets and Z+jets cases.
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Figure 6.5: W (`)+n jet cross sections. (Top) The ratios σ(W+ ≥ n jets)/σ(W ) and
(Bottom) σ(W+ ≥ n jets)/σ(W+ ≥ (n− 1) jets) in the (Left) electron and (Right)
muon channels. Measured yields are compared with expectations from simulated
events generated with MADGRAPH [80] and PYTHIA [213]. The uncertainties due
to the energy scale and unfolding procedure are shown as yellow and hatched bands,
respectively, while the error bars represent the total uncertainty.
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Figure 6.6: Z(``)+n jet cross sections. (Top) The ratios σ(Z+ ≥ n jets)/σ(Z) and
(Bottom) σ(Z+ ≥ n jets)/σ(Z+ ≥ (n − 1) jets) (bottom) in the (Left) electron
and (Right) muon channels. Measured yields are compared with expectations from
simulated events generated with MADGRAPH [80] and PYTHIA [213]. The uncer-
tainties due to the energy scale and unfolding procedure are shown as yellow and
hatched bands, respectively, while the error bars represent the total uncertainty.
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Figure 6.7: Fit results for the scaling parameters α and β after pileup subtraction,
efficiency corrections, and unfolding of detector resolution effects. (Top) W+jets,
(Bottom) Z+jets, (Left) electrons and (Right) muons. The ellipses correspond to
68% confidence level contours considering the statistical uncertainty only, for both
data and simulation. The arrows show the displacement of the central value when
varying each indicated parameter by its estimated uncertainty. The arrows labelled
“MG+D6T migration matrix” correspond to the uncertainty from the unfolding pro-
cedure, which uses simulated events generated with MADGRAPH [80].
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Chapter 7

Spinning the Higgs

On July 4th, 2012 the CMS and ATLAS experiments at the CERN LHC announced

the discovery of a new particle. Both experiments observed a boson in the γγ and

Z(``)Z∗(``) final states, with each experiment indicating a discovery with signifiance

exceeding 5 σ. CMS measures the mass of this new boson to be 125.3± 0.4 (stat)±
0.5 (syst) while ATLAS finds 126.0 ± 0.4 (stat) ± 0.4 (syst), indicating a consistent

observation between the experiments. This discovery comes in the context of a search

for the SM Higgs boson and the cross section, decay channels and mass are in agree-

ment, so far, with expectations from the Higgs. It may be that the final component

of the SM has finally revealed itself.

Because the idea is so venerable, one may have grown insensitive to how special

a Higgs boson would be. Its quantum numbers must be those of the vacuum, which

its field permeates. Its couplings to the electroweak gauge bosons W± and Z are

proportional to their masses, as are its couplings to quarks and leptons. Any deviation

from the predicted quantum numbers or couplings of a putative Higgs boson would

have deep ramifications for particle physics. After this discovery, the experimental

program for Higgs physics must be focused on the rigorous determination of these

fundamental quantities to confirm whether or not it is the Higgs.

We discuss here how the quantum numbers of a Higgs look-alikes (HLLs) can be

measured. The study focuses on the so-called “golden channel” for Higgs physics,

namely the Higgs decay H → ZZ∗ → 4` , where Z∗ denotes that one of the Zs may

be strongly off-shell, as is the cases for the events attributed to the new boson in CMS
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and ATLAS. This channel has the advantage that the kinematics of the Higgs and its

decay products are fully reconstructible from a completely leptonic final state. The

information in the corresponding decay angles can be used to infer the quantum num-

bers of the decaying H, and distinguish between SM Higgs bosons and an imposter.

This study, performed in 2010 with with Alvaro De Rújula, Joseph Lykken, Maurizio

Pierini and Maria Spiropulu [81] did not have the benefit of knowing the mass of a

putative Higgs and so considers three test masses, 145, 200 and 350 GeV/c. Similarly,

the study examined the possibility that an HLL could have spin 1. If the observed

resonances in the γγ and 4` final states correspond to the same bosons this possibility

is excluded by the Landau-Yang theorem [82,83], and hence we will not discuss it in

this context. Regardless, theories of physics beyond the SM predict that there could

be other new bosons which decay through the golden channel, such that these test

mass results and spin 1 cases would still apply if there are additional discoveries. We

will see that early CMS studies of the new bosons quantum numbers, applying the

techniques from this study, are in relatively good agreement with the expectations

from the mH = 145 GeV/c2 test case described here.

In our analysis we compare a SM Higgs signal to a variety of Higgs look-alikes. We

consider the most general Lorentz invariant couplings of a massive, spinless boson to

ZZ or ZZ∗; this corresponds to gauge-invariant couplings up to dimension six. Some

of the corresponding HLLs can be considered as modifications of the SM Higgs prop-

erties via P or CP violation or Higgs compositeness. Another spin 0 HLL corresponds

to a new massive pseudoscalar, a particle occurring in models with extended Higgs

sectors such as supersymmetry. We also discuss as one of our HLLs a massive spin

2 resonance coupling to the ZZ energy-momentum tensor, not necessarily with the

universality of a graviton-like coupling. Although universally-coupled massive gravi-

tons are already experimentally excluded in the relevant mass range [84], general spin

2 HLLs are a natural example of our study of spin discriminations.
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7.1 The Golden Channel: H→ ZZ∗ → 4`

The purpose of this study is to quantify the degree to which one can discriminate

a SM Higgs boson from HLLs at, or close to, the moment of discovery at the LHC.

There is a vast literature about determining Higgs properties from signals in a variety

of final states (for a review, see [85]), but this research mostly addresses only the

related question of whether it is possible at all to determine Higgs quantum numbers

and couplings at a hadron collider. The current situation in this respect is similar

to the LHC experimental program for supersymmetry, where only recently are there

quantitative studies of the potential to discriminate supersymmetry look-alikes at the

moment of discovery [86–90].

Our study focuses on the so-called “golden channel” for Higgs physics, namely the

Higgs decay H → ZZ∗ → `+
1 `
−
1 `

+
2 `
−
2 , where `±1,2 denotes an electron or a muon, and

Z∗ denotes that one of the Zs may be strongly off-shell. Approximately half of the

events will be µ+µ−e+e−, where all four leptons are easily distinguishable, and even

in the 4µ and 4e final states all four leptons can be distinguished by the requirement

that one or both Z bosons are reconstructed within an on-shell mass window. A

well-measured, four-body, closed kinematic final state provides many independent

observables for determining properties of the observed resonance; thus this channel

provides more information than, e.g., the Higgs decay into two photons, where the

photon polarizations are not measured.

We factorize the HLL problem into observables related to production and observ-

ables related to decay. In this paper we perform a systematic analysis including all of

the information from the putative Higgs decays, leaving the analysis of Higgs versus

HLL production to later work. While this factorization of production and decay is not

completely clean, we find that the resulting model-dependent uncertainty introduced

into the decay analysis is small. A full analysis will include production information

and could produce stronger results than those presented here, since large cross section

differences are expected between SM Higgs production and the production of many

Higgs look-alikes. However, including Higgs and HLL production also introduces
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new theoretical and measurement uncertainties and assumptions involving associated

hadronic jets and the parton distribution functions that describe the initial state.

The analysis depends on five distinct angles that describe the H → ZZ∗ → 4`

decay process. In the case where one of the Z bosons is strongly off-shell, the SM Higgs

versus HLL decays also differ in their dependence on the reconstructed Z∗ invariant

mass. Because we are interested in HLL discrimination with small data samples, at or

near the moment of discovery, we need to use all of the decay information in the events,

including not just the distributions but also the correlations between all five (or six) of

the relevant observables. Previous analyses of the Higgs golden mode decay properties

have examined the dependence on some of the relevant angular distributions [91–96]

and have shown the potential for LHC measurements to discriminate a SM Higgs from

look-alikes with different spin and parity assignments or CP properties [85, 94–110].

However, none of these studies utilized all of the decay information in the events, and

all of them have ignored the effects of detector phase space sculpting of the angular

distributions, which are accounted for here.

We will denote the putative Higgs and its mass by H and mH , regardless of

whether it is a SM Higgs or a look-alike. This notation is also used to describe

background events, where the four-lepton object is treated as a Higgs or HLL in the

sense that mH stands for m4`. Since the events are fully reconstructible the lab frame

kinematics of the candidate H particles are known: their transverse momentum pT ,

pseudorapidity η, and azimuthal angle. These three variables define the direction

and boost from the lab frame to the H rest frame. All other observables can then be

defined with respect to the H rest frame, as illustrated in figure 7.1.

The H azimuthal angle plays no physical role, while the pT and η distributions

influence the way the detector selects events, sculpting the distributions of the final-

state lepton’s directions and energies. Once an event is boosted back to the 4 `

rest-system (the rest system of the two initial-state fusing partons), the memory of

pT and η is lost, modulo these phase space acceptance effects.

In the approximation that the final-state leptons are massless, 12 observables are

measured per event. Since all 12 are well-measured there is no experimental reason
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not to reexpress these in terms of whatever combinations most naturally capture the

underlying physics. Thus we choose four observables to be mH and the three pro-

duction observables just described that define the H rest frame. The remaining eight

observables are taken to be the two reconstructed masses of the Z bosons together

with six decay angles defined with respect to the H rest frame.

In the H rest frame the reconstructed Z bosons are back-to-back. We label these

bosons as Z1, Z2 and take the direction of Z2 as defining the positive z-axis. Because

of Bose symmetry, the labeling is arbitrary; in the case of an e+e−µ+µ− final state

we will follow the literature [106] and choose Z2 to be the Z boson that decayed to

muons. We then adopt the additional convention that the transverse direction of the

µ− lies along the positive y-axis; thus the Z2 decay leptons lie in the y-z plane.

With the above choices, the reconstructed Z boson masses m1 and m2 also define

the longitudinal boosts from the H rest frame to the rest frames of the decaying Z1

and Z2 bosons. The boost parameters are given by

γ1 =
mH

2m1

(
1 +

m2
1 −m2

2

m2
H

)
, (7.1)

γ2 =
mH

2m2

(
1− m2

1 −m2
2

m2
H

)
. (7.2)

We let θ1, ϕ1 denote the `−1 decay angles in the Z1 rest frame, while θ2, ϕ2 denote the

`−2 decay angles in the Z2 rest frame.

There are two additional angles Θ, Φ defining the direction of the initial state

partons as reconstructed in the H rest frame. For a gluon-gluon initial state these

angles measure a rotation from the z-axis defined above to the direction of the ini-

tial state gluon with positive z-component of momentum. For quark-antiquark (qq̄)

initiated production of an HLL we have the problem that we do not know event-by-

event which proton contributed the antiquark; this is resolved by symmetrizing the

expected angular distributions under the replacement cos Θ→ −cos Θ.

As expected, one combination of the three azimuthal angles Φ, ϕ1 and ϕ2 is

physically redundant. We take advantage of this fact to make the replacements ϕ1 →
Φ + φ, ϕ2 → Φ. Thus φ then represents the azimuthal rotation between the Z2 and
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Z1 decay planes.

In summary, the 4-momenta of the process gg → H → Z1Z2 → `−1 `
+
1 `
−
2 `

+
2 are

explicitly parametrized in the H rest frame as

pg2 =
mH

2
( 1, S cos Φ, S sin Φ, C) ,

pg1 =
mH

2
( 1,−S cos Φ,−S sin Φ, −C) ,

k = mH ( 1, 0, 0, 0) ,

p2 = m2 (γ2, 0, 0, β2γ2) ,

p1 = m1 (γ1, 0, 0,−β1γ1) ,

p`−2 =
m2

2
(γ2(1 + β2c2), 0, s2, γ2(β2 + c2)) , (7.3)

p`+2 =
m2

2
(γ2(1− β2c2), 0, −s2, γ2(β2 − c2)) ,

p`−1 =
m1

2
(γ1(1 + β1c1), −s s1, −c s1,−γ1(β1 + c1)) ,

p`+1 =
m1

2
(γ1(1− β1c1), s s1, c s1,−γ1(β1 − c1)) .

Here k denotes the 4-momentum of H, while p1, p2 are the 4-momenta of Z1, Z2. We

used the condensed notation C, S=cos Θ, sin Θ, c, s=cosφ, sinφ, c1, s1=cos θ1, sin θ1,

and c2, s2=cos θ2, sin θ2.

Of the five relevant angles, Θ and Φ are Z-pair production angles, while the

remaining three are 4` production angles. We will use the notation

~Ω = {Φ, cos Θ} ,

~ω = {φ, cos θ1, cos θ2} . (7.4)

For a SM Higgs, the distributions in Θ and Φ are flat if we ignore the phase space

acceptance effects inherent in any experimental analysis. In previous studies these

two angles have typically been integrated over.

Although we have tried to conform to the literature in our parametrization of the

decay angles, we note that the literature itself is divided over the choice of which

decay plane orientation corresponds to φ=0 rather than φ=π. We conform to the
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convention of Buszello et al. [106], which is opposite to that of Djouadi [85] and

Bredenstein et al. [122].

θ2

µ−

µ+
z

y

e−

e+

q
π − Θ

Z2

θ1

Z1
ϕ

1

ϕ
2

g,

Figure 7.1: The Cabibbo-Maksymowicz angles [111] in the H → ZZ decays.

The decay amplitudes defined in the next section depend on two combinations of

the boost parameters γ1 and γ2, defined by

γa = γ1γ2(1 + β1β2) , (7.5)

γb = γ1γ2(β1 + β2) , (7.6)

which are in fact just the cosh and sinh of the rapidity difference of Z2 and Z1, such

that

γ2
a − γ2

b = 1 . (7.7)

More explicitly, we have

γa =
1

2m1m2

(
m2
H − (m2

1 +m2
2)
)
. (7.8)
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7.2 The Quantum Numbers of the Higgs Boson

and Other Possibilities

7.2.1 General Couplings to ZZ∗

The vertex Feynman rules for the most general coupling of a spin-less particle to the

polarization vectors εµ1 and εα2 of two Zs of four-momenta p1 and p2 are given by the

expression

Lµα = X gµα − (Y + i Z)
kαkµ
M2

Z

+ (P + i Q) εµα
p1p2

M2
Z

, (7.9)

where we have suppressed repeated indices in the contraction of the four-index ε

tensor, k=p1 + p2 and only Lorentz-invariance has been assumed. The dimensionless

form factors X to Q are functions of k2 and p1 · p2 which, with no loss of generality,

can be taken to be real (but for their absorptive parts, expected to be perturbatively

small). The rescalings by 1/M2
Z are just for definiteness, since the true mass scale of

the underlying operators is as yet unspecified. In practice we also remove an overall

factor of igMZ/cos θW , so that X=1 corresponds to the tree level coupling of a SM

Higgs boson.

Similarly, most general parity-conserving vertex describing the coupling of a J=2+

particle of polarization tensor ερσ to our two vector bosons is

Lρσµα = X0m
2
H g

µρ gασ

+(X1 + i Y1) (pα1 p
ρ
2 g

σµ + pρ1 p
µ
2 g

σα)

+(X2 + i Y2) pρ1 p
σ
2 g

µα, (7.10)

where we have dropped contributions that have more than two derivatives or are

odd under parity, and again with all coefficients real. The special case of tree level

graviton-like couplings corresponds to

X0 = −1

2
κ , X1 = κ , X2 = −κ , (7.11)
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with all other coefficients vanishing and κ an overall coupling strength.

These general couplings, with naive mass dimensions d = 3, 4, and 5, can arise

from SU(2)L × U(1)Y invariant operators of dimension 5, 6, or higher. Since, for

HLLs with nonvanishing weak charges this parentage introduces model dependence,

we relegate it to a brief discussion in Appendix A.2.

7.2.2 “Pure” Cases of Specified JPC

We specify in this section the results for four cases (scalar, pseudoscalar, vector and

axial vector) that would be “pure” in the sense of having a single dominant term in

their HZZ couplings, which we use to define their spin and parity. This allows one to

illustrate the mass and angular dependences of the predictions, setting the stage for

the later discussion of the impure cases for which P and/or CP are not symmetries

of the theory, and to establish comparisons with the existing literature.

The general expressions for the angular correlations in the ZZ∗ case (which in-

cludes ZZ when the two Z masses are fixed at MZ) are given in section A.4, where

η ≡ 2 cv va
(c2
v + c2

a)
' 0.15, (7.12)

denotes the quantity arising from the SM couplings of the Z bosons to the final state

leptons.

7.2.2.1 The Standard Higgs, JPC = 0++

The tree level SM coupling of the Higgs to two Zs of polarization ε1 and ε2 is ∝ ε1·ε2
(see equation (7.9)). The angular distribution of the leptons in H → ZZ → 4 l decay,

for on or off-shell Zs of mass m1 and m2, is

dΓ[0+]

dc1 dc2 dφ
∝ m2

1m
2
2m

4
H

[
1 + c2

1c
2
2 + (γ2

b + c2)s2
1s

2
2

+2γa c s1s2 c1c2 + 2η2(c1c2 + γa c s1s2)
]
. (7.13)
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7.2.2.2 A Pure Pseudoscalar, JPC = 0−+

The coupling of a JPC=0−+ pseudoscalar to two Zs of polarization ε1 and ε2 and

four-momenta p1 and p2 is proportional to ε[ε1, ε2, p1, p2], (see equation (7.9)). The

angular distribution of the leptons in its ZZ → 4 l decay is

dΓ[0−]

dc1 dc2 dφ
∝ m4

1m
4
2 γ

2
b

(
1 + c2

1c
2
2 − c2s2

1s
2
2 + 2 η2 c1c2

)
. (7.14)

7.2.2.3 A Pure Massive Graviton, JPC = 2++

Since the general analysis of spin 2 coupling to off-shell Zs is quite cumbersome, we

will only quote results for the example of a positive parity spin 2 with graviton-like

couplings produced by gluon fusion and decaying to two on-shell Z’s. Defining the

on-shell ratio x ≡ mH/MZ and using the massive graviton formalism of [112], we

obtain the tree level angular distribution

dΓ[gg → graviton→ ZZ]

dC dc1 dc2 dΦ dφ
∝ 16x4C2 + 2(x4 + 16)S4 + s2

1s
2
2[(x4 + 16)S4 − 4x2(x2 + 4)S2 + 4x4]

+8x2S2
[
[2 + S2 + (2− 3S2)c2

2]s2
1 cos(Φ + φ)2 + [2 + S2 + (2− 3S2)c2

1]s2
2 cos2Φ

]

+S4s2
1s

2
2[x4 cos(2Φ + φ)2 + 16 c2]− (s2

1 + s2
2)[(x2 + 4)2C4 + 2(3x4 − 16)C2 + (x2 − 4)2]

+2S2c1 c2 s1 s2

[
x2 [2(x2 + 4)− (x2 + 12)S2]cos(2Φ + φ) + 4 [4x2 − (3x2 + 4)S2]c

]
. (7.15)

We note the cos4 Θ dependence characteristic of a spin 2 resonance.

7.2.3 Tests of Symmetries

Now we discuss the behavior of the HZZ couplings under various symmetries, includ-

ing CP and Bose-Einstein statistics. The discussion attempts to clarify the literature

on these issues.

Consider the J=0 case. The most general coupling of a spin-less particle to the

polarization vectors ε1 and ε2 of two Zs is that of equation (7.9). In computing the

ensuing H → ZZ∗ → 4` process one finds that the XP interference term is of the
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form:

dΓ[0,Todd]

dc1 dc2 dφ
∝

2m3
1m

3
2m

2
H γb s1 s2 s

[
s1 s2 c+ γa (c1c2 + η2)

]
, (7.16)

where the term sin θ1 sin θ2 sinφ ∝ ~pe+ · ~pµ− × ~pµ+ . By definition, this observable

is T̃ -odd: it changes sign as all three-momenta are reversed (the tilde in “ T̃ -odd”

emphasizes that past and future are not being interchanged).

The Born approximation is, by definition, the result of squaring the amplitude

dictated by the Lagrangian to lowest order in its couplings: a quadratic result, in our

case, in any pair of the quantities X to Q in equation (7.9). To this order, a T̃ -odd

observable must vanish if CP is a symmetry, as shown in [113]. Thus, a nonvanishing

T̃ -odd observable such as that of equation (7.16) can only arise if CP -invariance is

violated.

The XQ interference term resulting from equation (7.9) is

dΓ[0,Codd]

dc1 dc2 dφ
∝

−2 η m3
1m

3
2m

2
H γb [c1 + c2] (1 + c1c2 + γa s1s2 c) . (7.17)

This term is CP odd and T̃ -even, a combination not addressed by the theorem quoted

above. It is a C-odd observable, in that it changes sign under the interchange of

pe+ ↔ pe− and pµ+ ↔ pµ− , tantamount to cos θi ↔ −cos θi in our chosen notation.

7.2.4 Tests of Compositeness

If the couplings of an HLL conserve P and CP , but the object is not point-like,

there will be deviations from the standard gµν coupling to Zs. To lowest order in

the dimensions of the corresponding effective operators, these will be of two types.

The first is a nonvanishing Y in equation (7.9), and the second is a nontrivial form

for X. Barring large effects (quite conceivable in a model with multiple SM Higgs-

like fields) deviations in X are much harder to limit or measure than a nonzero
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Y/X which is governed by the shapes of angular distributions. Contributions to Y

can arise from gauge invariant operators of dimension 5 containing a non SM-like

spin 0 HLL (Appendix A.2) or from higher dimension operators containing the SM

Higgs [114–116].

It is useful to introduce the notation tan ξ ≡ Y/X. In this notation, the “com-

posite” HLL angular distribution is of the form:

dΓC = cos2ξ dΓXX + cos ξsin ξ dΓXY + sin2ξ dΓY Y , (7.18)

where dΓXX is the standard result of equation (7.13). The interference term is

dΓXY
dc1 dc2 dφ

∝

−2m3
1m

3
2m

2
H γ

2
b s1 s2 (c1c2c+ γa s1s2 + η2 c) , (7.19)

and the last term is
dΓY Y

dc1 dc2 dφ
∝ m4

1m
4
2 γ

4
b s

2
1s

2
2 . (7.20)

Contrary to all of the other cases we study, the interference term in this instance

is between two operators whose P and C are identical: the HLL is not point-like, but

it is ‘pure’ 0++. As a consequence, the angular distribution of the interference term

is not very different from that of the XX and Y Y terms and the interference can, for

certain values of Y/X, be very destructive. This can be seen even at the level of the

H → ZZ branching fraction, the integral of equation (7.18) over cos θ1, cos θ2, and φ,

ΓC ∝ m2
1m

2
2 [2cos2ξ + (γacos ξ −m1m2γ

2
b sin ξ)

2] . (7.21)

If ξ has a value close to the (mass-dependent) point of maximal interference, the

golden mode channel can be suppressed by a large factor. For this to happen X and

Y ought to be of the same order of magnitude, signifying a low dynamical scale for a

composite Higgs.
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7.3 Measuring Higgs Quantum Numbers

7.3.1 Statistical Approach

In this section we discuss the statistical formulation we use to address comparisons

between different hypotheses as well as relevant measurements for the characterization

of an HLL resonance. We focus on four statistical approaches:

• (1) Comparisons between two “pure” spin-parity hypotheses (such as 0+ vs. 0−).

• (2) Comparisons between two spin-parity hypotheses, with at least one of the

two being an “impure” admixture of two pure HLL states (e.g., 0+ vs. a com-

bination of 0+ and 0−). This case is similar to (1), except for the presence of

one or more nuisance parameters.

• (3) The measurement of mixing parameters in the case of impure Higgs look-

alikes.

Each of these cases involves attempting to establish the nature of a newly discovered

particle. As described in section A.1, statistical subtraction techniques based on a

fit to the four-lepton invariant mass distribution can be used to effectively remove

background events from the same. In this study, measurements of the Higgs quantum

numbers are performed on samples composed exclusively of signal events, with back-

ground assumed to have been removed. This is judged to give a good approximation

to an actual experimental analysis.

The cases (1) and (2) involve tests between different JP interpretations for signal

events appearing in the four-lepton resonance. In the (1) scenario the two hypotheses

under consideration are simple, i.e., the corresponding likelihoods are fully specified

once the values ~X are fixed. In the (2) case the unknown mixing angles for the

impure hypothesis, referred to as ~ξ (and including, e.g., various mixing angles), are

treated as nuisance parameters. The analysis in case (3) is a traditional parameter

estimate, based on the ML fit, for which we obtain a confidence interval by using the

Feldman-Cousins approach [117]. We discuss the three cases starting from the last.



111

7.3.1.1 Coupling Admixtures

Consider the example of a one-parameter mixture of two types of HZZ coupling,

such as the composite case discussed in section 7.2.4. For a fixed value of the reso-

nance mass mH and the mixing angle ξ, equation (7.18) is the theoretical probability

distribution of the events as a function of the variables ~X for ZZ and ZZ∗ final

states. The experimental pdf is a numerical representation of the result of sieving

(with a specific detector and its resolution, trigger and analysis requirements) a very

large number of events, generated with the theoretical pdf of equation (7.18). This

experimental pdf, referred to as P , is a function P=PmH (ξ, ~X) of mH , (which is kept

fixed through this exercise), ξ, and ~X. The dependence on ~Ω ≡ {cos Θ,Φ} is, in this

example, exclusively a phase space acceptance effect.

Many experiments with a fixed number of events NS are simulated, assuming the

same detector response. The probability of each event, evaluated with the exper-

imental pdf, is Pi. The likelihood of a given experiment is L(ξ) =
∏NS

i=1 Pi. The

experimentally measured value of the ξ parameter, ξ̂ corresponds to the value that

maximizes L(ξ). The simulation is repeated many times, as a function of the true

value of the mixing angle ξ. Running many experiments one can derive the confidence

interval, i.e. the range covering the true value of ξ for some confidence level and some

measured value ξ̂ [117].

It is customary to estimate the error (or the number n of standard deviations σ)

in the measured ξ from the expression L(ξmax ± nσ) = L(ξmax) − n2/2. While this

method is accurate for large samples with Gaussian errors, it is not the one used to

draw the σ contours in figure 7.2 (where ξ=ξXQ as given in equation (7.25) and in

the similar figures of section 7.3.2). Instead, the confidence level (CL) is evaluated

measuring the frequency of a given result in the set of generated pseudoexperiments.
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Figure 7.2: Confidence intervals for measured values of ξXQ for a C-violating J=0
resonance with a mass 200 GeV/c2.

7.3.1.2 Confronting JP hypotheses

Consider two hypotheses, H0,1, for the spin-parity assignment of a signal candidate

sample, detected via its ZZ mass peak and background-subtracted using the sPlot

method. Large numbers of events are generated assuming each hypothesis and used

to construct two unbinned experimental pdfs: PH0,1 ≡ PmH ( ~X |H0,1). For our pure

spin-parity cases, the simple nature of the hypotheses considered guarantees through

the Neyman-Pearson (NePe) lemma [118] that the hypothesis test is universally most

powerful. Next, we explicitly identify one hypothesis as H0 and the other as H1.

Additionally, we specify the test statistic Λ which we define as the log-likelihood ratio

log[L(H1)/L(H0)]. Finally, we must a priori choose the acceptable probability level α

of rejecting H0 in favor of H1, even though H0 is true (Type I error). We generate a

series of pseudoexperiments with a fixed number of events NS to construct the pdf of Λ

for the two hypotheses. A typical result is illustrated in figure 7.3. We first generate

pseudoexperiments considering H0 as true. For each experiment we construct two

likelihoods L(H0) ≡ ∏NS
i=1 PH0( ~Xi) for the correct interpretation of the true theory,

and L(H1) ≡ ∏NS
i=1 PH1( ~Xi) for its incorrect interpretation. With the ensemble of

experiments one constructs the distribution P (Λ |H0) with Λ ≡ log[L(H1)/L(H0)].

The result is the leftmost (red) curve in figure 7.3. The exercise is repeated with the

pseudoexperiments generated considering H1 as true and the result is the rightmost
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(blue) curve in the figure. An a priori chosen value of α implicitly defines a value

Λ̂(α) via

α =

∫ ∞

Λ̂(α)

P (Λ |H0) dΛ . (7.22)

This fixed value Λ̂(α) implies that

β(α) =

∫ Λ̂(α)

−∞
P (Λ |H1) dΛ (7.23)

is the probability of accepting H0 even though H1 is correct (Type II error). The

value 1 − β is called the power of the test. When the real experiment is performed,

a specific value Λexp, is obtained for Λ. The associated p-value =
∫∞

Λexp
P (Λ |H0) dΛ ,

is compared to α to determine if the measurement favors one hypothesis versus the

other.

Instead of the α and β values, the significance σ is commonly used. To convert

to an equivalent number of σ’s using figure 7.3 we calculate the same α-area in a

Gaussian distribution centered at 0 with σ=1. The number n of α-equivalent standard

deviations is obtained by inverting

α =
1√
2π

∫ ∞

n

dx e−x
2/2 . (7.24)
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Figure 7.3: Distribution of Λ for mH=200 GeV/c2 and NS=23, constructed with
∼ 109 pseudoexperiments. The hypotheses being confronted are H0=0+ and H1=0−.
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The a priori (subjective) choice of α (and subsequently β and corresponding sig-

nificances) is heavily discussed in the literature. The Physical Review, for example,

requires a 5σ (3σ) significance to claim discovery (evidence). The caveat is, of course,

that when one minimizes as much as possible the probability of an error of Type

I (wrongly claiming a discovery) one risks making an error of Type II (and, e.g.,

delaying the claim of a discovery to the next luminosity upgrade).

A pure vs. impure HLL hypothesis test has an additional complication due to the

dependence of the likelihood function on the mixing angles ~ξ in at least one of the two

hypotheses. In this case, we are testing the simple (i.e. mixing angle independent)

hypothesis against a class of alternative hypotheses, connected by the variation of a

continuous unknown parameter(s). The test is performed by comparing the simple

hypothesis to the impure hypothesis with values of ~ξ that best fit the data.

The impure vs. impure Higgs look-alike test is technically identical to the pure

vs. impure. Here, we try to exclude some value of the mixing angle parameter for one

of the two composite hypotheses in favor of the alternative impure hypothesis, where

the mixing angles are treated as nuisance parameters. With fixed mixing angles, one

impure look-alike becomes a simple hypothesis (like a pure one) tested against an

impure hypothesis.

7.3.2 Results

We present results for three HLL masses: mH=145, 200, and 350 GeV/c2, using

pseudoexperiments built with the full ~X pdf.

7.3.2.1 0+ vs. 0−

We consider here two different “pure” scalar hypotheses: 0+, corresponding to a

SM Higgs, and 0−, a pseudoscalar. Neither of these possibilities has an explicit

dependence on the angles ~Ω in their differential cross section, meaning that only

the variables ~ω (and the off-shell Z mass, m2=MZ∗ , for mH < 2MZ) are used to

discriminate between the two hypotheses.
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Figure 7.4: Distributions of the variables φ (left) and cos θ1 (right) for 0+ and 0−

resonances with mH=350 GeV/c2. All distributions are normalized to a unit integral.

In figure 7.4 we show the distributions in φ and cos θ1 at mH=350 GeV/c2 for

JP=0+ and 0−. These angular variables (along with cos θ2, whose distribution is iden-

tical to that of cos θ1 except when Z2 is off-shell) provide the discrimination between

these two hypotheses at all masses mH . For masses mH below the 2MZ threshold, the

kinematic factors in equations (7.13) and (7.14) result in the differential cross section

dependences on the off-shell Z mass MZ∗ that differ for the 0+ and 0− cases. This

is illustrated in figure 7.5 (left) for mH=145 GeV/c2. For all the discriminating vari-

ables we consider, the ability to distinguish between two hypotheses is degraded when

their correlations are neglected. This is shown in figure 7.5 (right) where we present

the results of the NePe hypothesis test between 0+ and 0− for likelihoods built using

different subsets of variables and correlations thereof. Specifically P (MZ∗ , ~ω) denotes

the use of the full set of variables while in P (~ω) the probability distribution of MZ∗

is ignored. The product of all one-dimensional probabilities, ignoring correlations, is
∏

i P (Xi). As expected, the likelihood including all discriminating variables and their

correlations is optimal. The other two definitions give similar results. We note that,

regardless of the results, the use of
∏

i P (Xi) is an improper approximation, since the

Xi variables are far from being uncorrelated.

The significance for discriminating between the 0+ and 0− hypotheses (assuming
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Figure 7.5: (Left) Distribution of MZ∗ for 0+ and 0− H → ZZ∗ decays at mH=145
GeV/c2, normalized to a unit integral. (Right) Median significance for rejecting 0−

in favor of 0+, assumed to be correct, as a function of NS. The different likelihood
constructions are specified in the text.

one or the other to be correct), as a function of NS, where NS is the number of

observed signal events, is shown in figure 7.6 for mH=145 GeV/c2. In all cases,

results correspond to the case where H1 is the true hypothesis (see section 7.3.1).

The model discrimination is based on a NePe test between these simple hypotheses

with test statistic log(L[0+]/L[0−]). The variables ~ω (and MZ∗ , when applicable),

along with their correlations, are used in the likelihood construction. The significance

for rejecting one hypothesis in favor of the other at around the time of 5σ excess in

this single channel is better than 3σ for mH=145, 200, and 350 GeV/c2 while a 5 σ

discrimination can be achieved with twice the observed signal events (less than ∼40

events in both mass cases presented here).

7.3.3 0+ vs. 2+

We consider one “pure” spin 2 model: a J=2+ heavy graviton-like resonance. A

J=2 object has pdfs with nontrivial dependence on the angles ~Ω up to quartic order

in cos Θ. In figure 7.7 we show the corresponding distributions in the ~Ω variables

for mH=200 and 350 GeV/c2. The ability to discriminate between the 0+ and J=2

hypotheses improves with increasing resonance mass. Despite the presence of quartic
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Figure 7.6: Significance for rejecting 0− in favor of 0+, assuming 0+ is true (left),
and vice-versa, 0+↔0− (right), for mH=145. The dashed central line is the median
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terms in cos Θ in the 2+ pdf and the absence of this variable in the 0+ pdf, their corre-

sponding one-dimensional pdfs are similar for the 0+ and 2+ resonances for values of

mH close to 2MZ , as shown in figure 7.7. Similar behavior is observed in the distribu-

tions of cos θ1 and cos θ2, as illustrated in figure 7.8. Nevertheless, the inclusion of all

angular variables and their correlations improves the discrimination power between

these hypotheses as shown in figure 7.9.
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onances with masses of 200 and 350 GeV/c2 (top, bottom). All distributions are
normalized to a unit integral.

The significance for discriminating between 0+ and 2+ as a function of NS, is

summarized in figure 7.10 for mH=350 GeV/c2. For these tests the variables ~Ω and

~ω and their correlations were used in the likelihood. Model discrimination is based

on the NePe test between simple hypotheses with test statistic log(L[0+]/L[2+]) and

log(L[0+]/L[2−]).
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for the different likelihood constructions discussed in the text.
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Figure 7.10: Significance for rejecting 2+ in favor of 0+, assuming 0+ is true (left) or
vice-versa (0+↔2+, right), for mH= 350 GeV/c2.
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7.3.4 0+ vs. Mixed Scalar States

Consider the vertex Feynman rules of equation (7.9) for the most general Lorentz-

covariant coupling Lµα of a spinless object to a Z pair. Rather than studying the

general case, for which any of the quantities X to Q can be nonzero, we investigate

three cases, each with only two nonvanishing types of coupling, resulting in one free

mixing “angle” and an overall normalization (which we ignore):

• X 6= 0, P 6= 0: A scalar whose ZZ coupling violates CP , described in terms of

an angle ξXP as

Lµα ∝ cos(ξXP ) gµα + sin(ξXP ) εµαp1p2/M
2
Z

• X 6= 0, Q 6= 0: A scalar whose ZZ coupling violates C, described in terms of

an angle as

Lµα ∝ cos(ξXQ) gµα + i sin(ξXQ) εµαp1p2/M
2
Z

• X 6= 0, Y 6= 0: A composite 0+, parameterized in terms of an angle as

Lµα ∝ cos(ξXY ) gµα − sin(ξXY ) kαkµ/M
2
Z

As a function of NS we estimate the significance with which one can determine:

• (a) What range of values of the angles can be excluded in favor of a pure 0+ for

a SM-like resonance;

• (b) Whether a pure 0+ can be excluded in favor of a nontrivial mixture when

the resonance corresponds to one of the three mixed cases discussed above.

We consider first the example of a CP -violating HZZ coupling with mH=350

GeV/c2.

To address (a) we construct a series of simple hypothesis tests of the type we

considered earlier for distinguishing between pure JPC states. Specifically, for a given



121

number of observed signal events at a fixed value of mH , we perform a NePe test

between two simple hypotheses: that the resonance is 0+ (denoted hypothesis H1)

or that the resonance is J=0 with ξXP fixed to a specific nonzero value (denoted

hypothesis H0). The test statistic we use is log[LXP (ξXP )/L(0+)], where L(0+) and

LXP (ξXP ) denote the likelihoods for a set of events agreeing with the hypotheses H1

and H0, respectively. The test cannot be performed for ξXP=0, since in this case the

H0 CP -violating hypothesis we want to test reduces to the alternative H1 hypothesis

(the CP-conserving SM Higgs).

The result of this test is the significance with which hypothesis H0 can be rejected

in favor of the hypothesis H1, or similarly, the significance with which a particular

value of ξXP can be excluded in favor of the 0+ hypothesis. This test is then repeated

with different fixed values of ξXP , i.e. different NePe tests with different hypotheses

H0. The results for a large ensemble of such tests are shown in figure 7.11. Here,

H0 = 0XP denotes the simple J=0 CP -violating hypothesis with ξXP fixed at values

chosen on the x-axis.
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Figure 7.11: Significance for excluding values of ξXP in the CP -violating J=0 hypoth-
esis in favor of the 0+ one, assumed to be correct, for mH=350 GeV/c2 and NS=50.
The dashed line corresponds to the median of the significance. The 1 and 2σ bands
correspond to 68% and 95% confidence intervals centered on the median value.
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In this example we see that, for NS=50, the significance for excluding a CP -

violating coupling exceeds 3σ for |ξXP | > 0.5 and 5σ for |ξXP | > 0.9.

In addressing (b) we cannot construct a simple NePe test between 0+ and a fixed-

ξXP hypothesis. Instead, we treat ξXP as a nuisance parameter and choose a value,

ξ̂XP , that maximizes the CP -violating likelihood for the given set of observed events.

Specifically, we fix ξXP at a particular value (the “true” value) to generate events and

perform NePe tests comparing ξXP=0 (denoted hypothesis H0) and ξXP = ξ̂XP (H1).

This test is repeated for many different values of the fixed “input” ξXP .

An example of results from an ensemble of these tests is shown in figure 7.12.

Because of the addition of a nuisance parameter, the figure’s interpretation is not sim-

ply related to the interpretation of figure 7.11, which answered question (a). What

figure 7.12 shows is the expected significance with which one can exclude the SM

hypothesis in favor of the CP -violating hypothesis with ξXP=ξ̂XP , as a function of

the true value of ξXP (given on the x-axis). No a priori knowledge of the actual

value of ξXP is required to perform this test. From figures 7.11 and 7.12 we observe
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Figure 7.12: The significance for excluding a pure 0+ in favor of a CP -violating
HZZ coupling (ξXP 6= 0), assuming the latter to be correct, with ξXP given by its
x-axis values. Example for NS=50, mH=350 GeV/c2. Dashed line and bands as in
figure 7.11.

that the expected significances are symmetric around ξXP=0. This is due to the pdfs
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of the “pure 0+” and “pure 0−” terms being even under ξXP → −ξXP , while the

T̃ -odd interference term vanishes under the integration of cos θ1, cos θ2 or φ. We shall

see that there are exceptions to this trivial statement. Comparing these two figures

we observe a remarkable similarity of the significances of the two tests. Since two

different statistics are used, this is somewhat of a coincidence. To explain it, con-

sider the example with ξXP=π/5, which corresponds to vertical slices of figures 7.11

and 7.12. We denote the two different test statistics Λfix=log[LXP (ξXP )/L(0+)],

with ξXP fixed at its true value, corresponding to a simple hypothesis test and

Λmax=log[maxLXP (ξ̂XP )/L(0+)], profiled to the value ξ̂XP at which it peaks. The

distributions of Λfix and Λmax are shown in figure 7.13.
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Figure 7.13: Distributions of the two statistics Λ, defined in the text, for mH=350
GeV/c2 and NS=50. The hypotheses are H0=0+, and H1=0XP with the CP -phase
ξXP fixed at π/5. (Top) Probability distributions P(Λ|H). (Bottom) The same with
the 0+ results traded for 1 minus their cumulative values. The two nearly indis-
tinguishable vertical dotted lines correspond to the median values of the P(Λ|H1)
distributions.

In the top figure the bell-shaped curves P (Λfix|0+) and P (Λfix|0XP ) are charac-

teristic of a simple hypothesis test. The distributions of Λmax have a sharp cutoff

at Λmax=0, since the 0+ model is a member of the 0XP family with ξXP=0, and

maxLXP (ξ̂XP )/L(0+) ≥ 1, which are also features characteristic of this type of test.

The reason for two very different hypothesis tests to end up in the similar-looking

results of figures 7.11 and 7.12 is that the statistically significant features of the

different-looking P (Λ) distributions shown in figure 7.13 are actually very similar.

P (Λfix|0XP ) and P (Λmax|0XP ) differ, but the distributions of ξXP close to the max-
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ima are localized around the true input value, their median values and 68% and 95%

confidence intervals are nearly identical (try to tell apart the two vertical dotted lines

in the lower half of figure 7.13, at Λ ∼ 7). Also, the tails of one-minus-cumulative

distributions for P (Λfix|0+) and P (Λmax|0+) coalesce for p-values exceeding 2σ sig-

nificance, despite large differences in the distributions themselves.
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Figure 7.14: (Left) Significance for the exclusion of values of a CP -violating ξXP 6= 0
in favor of 0+ (ξXP=0), assumed to be correct. (Right) Significance for excluding a
pure 0+ in favor of ξXP 6= 0, assumed correct with ξXP given by its x-axis values.
Results for mH= 145 and NS=50.

In figure 7.14 we show the results for the distinction between pure 0+ and CP -

violating J=0 hypotheses for mH=145 GeV/c2. The “flat” behavior around ξXP=0 is

due to the coupling strength of the 0+ part relative to 0−, an order of magnitude larger

for mH=145 GeV/c2 and closer to unity for the higher mH values. The corresponding

results at mH=350 GeV/c2 are those of figures 7.11 and 7.12.

The next mixed J=0 case that we consider is that of a C-violating scalar, with

mixing angle ξXQ. This scenario is very similar to that of the CP -violating scalar:

only the interference term between the 0+ and 0− amplitudes is different (C-odd,

instead of T -odd). The expected results of hypothesis tests distinguishing between a

C-violating scalar and a 0+ state are shown in figure 7.15. Comparing this figure with

7.14, we observe identical behavior in all the results. This shows that the relative

strength between the 0+ and 0− parts of the matrix element squared, rather than the
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nature of the interference term, is the most relevant factor in resolving the values of

ξXP and ξXQ.
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Figure 7.15: (Left) Significance for excluding values of a C-violating ξXQ 6= 0 in favor
of 0+ (ξXQ=0), assumed to be correct. (Right) Significance for excluding a pure 0+

in favor of ξXQ 6= 0, assumed correct for the ξXQ-values on the x-axis. Hypothesis
tests are for mH=145 and NS=50.

If a pure 0+ hypothesis is rejected in favor of both ξXP 6= 0 and ξXQ 6= 0, the

next question would be whether it is possible to distinguish between these two cases.

To address this question, we perform a series of hypothesis tests similar to the one

described to answer type (2) questions. Specifically, we first assume a given CP -

violating ξXP 6= 0 as “true.” We then assess the expected significance with which

particular values of ξXQ can be excluded in favor of the true hypothesis. Hence, for

each fixed value of ξXP we perform a test against the C-violating case using a fixed

ξXQ. The test statistic is Λ = log[maxLXP (ξ̂XP )/L(ξXQ)], where the 0XQ hypothesis

is simple (fixed ξXQ) and L(ξXP ) is profiled “experiment by experiment.” The test

is repeated over a matrix of values for ξXP and ξXQ. Next, we switch the roles of

the hypotheses to assess the significance for excluding given values of ξXP in favor of

ξXQ 6= 0. The results are shown in figure 7.16. The color-coded z-axis is the median

of the significance for ruling out the hypothesis H0 with the value of ξH0 given on the

y-axis in favor of the H1 hypothesis with ξH1 6= 0, assumed to be correct for ξH1-values

chosen on the x-axis.
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Figure 7.16: The median of the significance (colored z-“axis”) for excluding values
of ξH0 (y-axis) in favor of the ξH1 6= 0 hypothesis assuming as correct the values ξH1

of the x-axis. The tests are performed for H1=0XP , H0=0XQ (Left) and H1=0XQ,
H0=0XP (Right); mH=145 and 350 GeV/c2 (top and bottom), for NS=50.

The similarities between the C- and CP -mixed scalars are reflected in the y↔x

symmetries of figures 7.16. Moreover, switching the roles of the two hypotheses (com-

paring the figures on the left with those on the right) one only sees small changes.

Still, the fact that the diagonals (|ξXP | = |ξXQ|) are not all at the same significance

shows that the tests are sensitive to the differences between the T̃ - and C-odd inter-

ference terms, but it would require an order of magnitude larger NS to draw 5σ-level

conclusions over most of the (ξXP , ξXQ) plane. For example, we show in figure 7.17

the significance with which one can distinguish between the two cases, as a function

of the number of observed events, for ξXY,XQ=π/4 and mH=200 GeV/c2. The am-

biguity between ξmeasXP , −ξmeasXP , ξXQ=ξmeasXP and ξXQ = −ξmeasXP would be very hard to

lift.

The last J=0 mixed case that we consider has unique features; this is the “com-

posite Higgs” in which a term ∝ kµkν is present in the HZZ coupling. This case is

different from the previous ones in that a composite scalar has well defined JPC=0++,

regardless of the value of the angle ξXY characterizing the mixing between its point-
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Figure 7.17: The significance for excluding the C-violating J=0 hypothesis in favor of
a CP -violating case, assuming the latter to be correct, with ξXP,XQ=π/4. Example
for mH=200 GeV/c2.

like and derivative couplings. As a consequence, the angular integrals of their inter-

ference term do not vanish, and there is no symmetry around ξXY =0. All the terms in

the pdf having the same discrete symmetries and similar angular dependences; there

happen to be large cancellations in the pdf for a “critical” mH-dependent value of

ξXY , as in the example shown in figure 7.18 for the fully angular-integrated result.

!!"# !!"$ !$"# $"$ $"# !"$ !"#

$"!

!

!$

|M(ξ)|2
|M(0)|2

mH = 350 GeV/c
2

ξ = ξ
XY

Figure 7.18: The fully angularly-integrated matrix element squared for a “composite”
0+, showing a strong destructive interference at a given ξXY . The result, shown here
for mH=350 GeV/c2, is normalized to ξXY =0.

The appearance of an order of magnitude enhancement of the squared matrix ele-

ment in figure 7.18 forO(1) values of ξXY can be regarded as an artifact of our choosing
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a rather low mass scale (MZ) in the definition of the dimensionless coupling Y in equa-

tion (7.9); if, e.g., we instead chose the compositeness scale at mH=350 GeV/c2, this

enhancement would be much smaller. Nevertheless the possible enhancement from a

nonzero Y coupling, and the possible suppression from XY interference, signifies an

interesting scenario: it is possible to discover an HLL that is in fact a 0++ resonance,

and is produced by exactly the same pp production processes as a SM Higgs, but

for which the cross section times branching fraction to ZZ is several times higher or

several times lower than Standard Model expectation.

We evaluate the significance with which one can distinguish between a point-like

and a composite 0+ using the same hypothesis-test approach described earlier for the

CP -violating scalar case. The results are shown in figure 7.19. We observe a nontrivial

behavior of the significance values at and around the critical ξXY . Interestingly,

the qualitative nature of these cancellations also changes with mass. For mH=145

GeV/c2 the composite scalar with ξXY near the critical point is 0+-like, relative to

nearby values of ξXY . For mH=350 GeV/c2, it is very difficult to distinguish between

the composite and elementary hypotheses, except if ξXY is close to critical. Near this

critical value the significance is greatly improved, because after the large cancellations

the angular distributions of the pure 0+ and the mixed case no longer resemble each

other.

As we discussed for the C- and CP -violating cases, an additional question is

whether one can distinguish a composite scalar from other mixed scalars. We find

that, compared to the composite case, the two other mixed cases are nearly identical.

The results for the distinction between the CP -violating and composite cases are

shown in figure 7.20. For large values of ξXY and ξXP , it is possible to distinguish

between the two hypotheses at a large significance with a mere NS=50. For mH=350

GeV/c2, the composite scalar is very similar to the point-like 0+ and cannot be

distinguished from it except if ξXY is near its critical point. Replacing the CP -

violating scalar with the C-violating one yields results nearly identical to the ones in

figure 7.20.
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Figure 7.19: (Left) significance for excluding values of ξXY in favor of a point-like 0+

(ξXY =0), assumed to be correct. (Right) significance for excluding a point-like 0+

in favor of a “composite” one (ξXY 6= 0), assumed correct for the ξXY values on the
x-axis, for mH=145 and 350 GeV/c2 (top and bottom) and NS=50.
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Figure 7.20: The median of the significance (colored-labeled z-“axis”) for excluding
values of ξXP (y-axis) in favor of the composite scalar assuming it to be correct with
the ξXY values of the x-axis, for mH=145 and 350 GeV/c2 (left and right) and NS=50.
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7.3.5 Lagrangian Parameter Estimation in Mixed J = 0 Cases

Were one to find out from real data and the hypothesis tests discussed in the previous

section that a mixed J=0 state is the preferred description, the next item in the

context of this analysis would be the measurement of its mixing parameters (in a

larger context one would include at this stage the measurement of decay branching

ratios).

We have seen in section 7.3.4 that our hypothesis tests can demonstrate, if correct,

that a standard 0+ particle is disfavored relative to a mixed scalar with unspecified

HZZ coupling ratios (or mixing angles). In these tests, the angles were treated as

nuisance parameters. Their measurement proceeds along the same line; the preferred

value is simply that which maximizes the likelihood, but the treatment of confidence

intervals need be different.

More specifically, each mixed hypothesis family is characterized by mixing angles

~ξ. For each “experiment,” N events are simulated, each one characterized by a

vector ~xe = {~ω, ~Ω,MZ∗}|e. The likelihood for a particular family of hypotheses is

L(~ξ) =
∏N

e=1 Pe(~xe,
~ξ). The measured values of the mixing angles, ~ξmeas, are chosen

to be those that maximize the likelihood. To assign confidence intervals to these

measurements we use a fully frequentist approach. An ensemble of “experiments” is

performed with fixed input values ~ξ=~ξinput. For each experiment, the measured values

of ~ξ are taken from the maximization of the likelihood. This procedure is repeated

for a fine matrix of input values, covering the allowed parameter space. From the

probability distribution functions P (~ξmeas|~ξinput), estimated using this ensemble of

experiments, the Feldman-Cousins unified approach [117] is used to choose which

elements of probability are included in confidence intervals.

As an example, consider the CP -violating scalar case, discussed in section 7.3.4.

The confidence intervals for measured values of ξXP (the mixing parameter that char-

acterizes this hypothesis) are shown in figure 7.21 for different values of mH . The way

to interpret these figures is as follows: For a particular set of data (one experiment,
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Figure 7.21: Confidence intervals for measured values of ξXP for a CP -violating
J=0 resonance, for mH=145, 200 and 350 GeV/c2 (left, center and right), all for
NS=50. For measured values of ξXP on the y-axis, confidence intervals should be
read horizontally, see text.

which in this case includes NS=50 observed events) an input value of ξXP (to be read

on the x-axis) results in a measured value to be read (with its error bands) on the

y axis. The confidence intervals are obtained by drawing a horizontal line passing

through the measured ξXP . The overlap of this line with the nσ bands dictates which

values of “input ξXP” should be included in the nσ confidence intervals. For example,

for mH=200 GeV/c2 (middle of figure 7.21) we see that, if ξmeas
XP =0, the 3 σ confidence

interval is approximately ξXP ∈ [−1, 1].

The 1σ bands in figure 7.21 are centered on the diagonal ξmeas
XP =ξinput

XP , implying

that there is no significant bias in the measurement. In addition to this, the 2 σ

and 3σ bands also cover most of the diagonal ξmeas
XP = −ξinput

XP . This confirms our

observation from section 7.3.4 that our ability to pin down this parameter comes

predominantly from measuring the relative strengths of the 0+ and 0− parts of the

pdf rather than the nature (T̃ -odd) of its interference term. An increased number of

observed events is needed to fully resolve this sign ambiguity.

In figure 7.21 we see that for mH=145 GeV/c2 (but not for mH=200 GeV/c2) the

size of the confidence intervals for ξXP decreases with increasing |ξXP |. This is due

to the effective coupling strengths of the 0+ and 0− parts of the pdf differing by a

factor of ∼10 at mH=145 GeV/c2 but not at the other masses. Hence, at the lowest

mass, only at tan2(ξXP ) ∼ 10 does the pdf exhibit 0+- and 0−-like behaviors of similar

magnitude.
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Figure 7.22: Confidence intervals for measured values of ξXQ for a C-violating J=0
resonance for mH=145, 200 and 350 GeV/c2 (left, center and right), all for NS=50.
For measured values of ξXQ on the y-axis, confidence intervals should be read hori-
zontally, see text.
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Figure 7.23: Confidence intervals for measured values of ξXY for a “composite” J=0
resonance, for mH=145, 200 and 350 GeV/c2 (left, center and right), all for NS=50.
For measured values of ξXY on the y-axis, confidence intervals should be read hori-
zontally.

Confidence intervals for measurements of the parameter ξXQ for a scalar with C-

violating HLL couplings are shown in figure 7.22; These are nearly identical to those

in figure 7.21, reflecting the difficulty of discriminating the ξXP 6= 0 and ξXQ 6= 0

hypotheses, as discussed in section 7.3.4. For the C-odd case, the sign ambiguity of

ξmeas
XQ is slightly worse than for the T̃ -odd one as demonstrated by the 1σ confidence

bands appearing on the ξmeas
XQ = −ξinput

XQ diagonal for mH=350 GeV/c2. This is also

expected, since the C-odd interference term is proportional to the relatively small

number η ≈ 0.15, see equation (7.17). One’s ability to distinguish between J=0 C-

and T̃ -odd admixtures relies on the resolution of the interference terms. With a factor

of 10 more statistics (NS ∼ 500), one would be able to resolve the sign ambiguity in

ξXP and ξXQ and to distinguish between the two cases.
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The confidence intervals associated with measurements of ξXY for a composite

scalar are shown in figure 7.23. We observe that, for mH=145 and 200 GeV/c2, the

1σ intervals are centered on the diagonal ξmeasXY = ξinputXY . There are no bands along

ξmeasXY = −ξinputXY , since the interference term is of a different nature than that of the

discrete-symmetry violating cases. The extensions of the 2 and 3σ bands along almost

horizontal and vertical lines around ξXY ∼ 1.3 result from large cancellations in the

pdf, discussed in section 7.3.4.

The figure for mH=350 GeV/c2 is hard to decipher. With a magnifier one sees

that at the critical value of ξXY the confidence intervals are tiny. Everywhere else,

the intervals essentially include all possible values except the critical one. This is

tantamount to saying that at this mass we cannot tell, on the basis of our analysis, a

composite from a point-like scalar unless is has a particular value of ξXY , a fact made

clearer by figure 7.19.

7.4 Conclusions and Outlook

These studies demonstrate that small signal samples in the ZZ → 4` or ZZ∗ → 4`

decay channels could be sufficient to characterize a putative Higgs particle. Below we

summarize these each of the results.

7.4.1 Summary of Pure Case Discrimination

Amongst the many comparisons considered in our analysis, the ones between simple

hypotheses are the most readily summarized. This we do in Tables 7.1 and 7.2 for

mH=145 GeV/c2 for all pure-case comparisons between J=0, 1 parent particles, and

in Tables 7.3, 7.4 (7.5, 7.6) for mH=200 (350) GeV/c2, for all pure-case comparisons

between J=0, 1, 2 parent particles.

Overall, the discrimination power of the hypothesis tests is very impressive. The

mH=200 GeV/c2 benchmark example is the one requiring the largest statistics to

reach a given discrimination at a given level of confidence. Compared with the

mH=350 GeV/c2 case, this is because various coefficients of the angular dependences
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H0 ⇓ H1 ⇒ 0+ 0− 1− 1+

0+ – 17 12 16
0− 14 – 11 17
1− 11 11 – 35
1+ 17 18 34 –

Table 7.1: Minimum number of observed events such that the median significance for
rejecting H0 in favor of the hypothesis H1 (assuming H1 is right) exceeds 3σ with
mH=145 GeV/c2.

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+

0+ – 52 37 50
0− 44 – 34 54
1− 33 32 – 112
1+ 54 55 109 –

Table 7.2: Same as Table 7.1, but requiring that the median significance exceeds 5 σ.

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+ 2+

0+ – 24 45 62 86
0− 19 – 19 19 38
1− 40 18 – 90 48
1+ 56 19 85 – 66
2+ 86 45 54 70 –

Table 7.3: Minimum number of observed events such that the median significance for
rejecting H0 in favor of the hypothesis H1 (assuming H1 is right) exceeds 3σ with
mH=200 GeV/c2.

vanish at the mH=2MZ threshold. The mH=145 GeV/c2 example fares better than

the 200 GeV/c2 one for the same reason, amplified by the extra lever-arm supplied

by a non-trivial MZ∗ distribution.

The tables also show that the discriminating power between two given hypotheses

is approximately symmetric under the interchange of “right” and “wrong.” Telling

1+ from 1− is always difficult but not impossible, a fact of relevance for a Z ′ look-alike

analysis. The level of significance does not obey a näıve N(σ) ∝ √NS law. However

we find by inspection that an approximation of the form N(σ) = a + b
√
NS works

well, allowing one to extrapolate to larger numbers of events than presented here.

Other lessons from the tables are case-by-case specific, reflecting the mass-dependent

quantum-mechanical entanglement between the decay variables. Some examples are:
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H0 ⇓ H1 ⇒ 0+ 0− 1− 1+ 2+

0+ – 76 146 203 287
0− 59 – 60 61 123
1− 130 57 – 297 156
1+ 182 58 278 – 217
2+ 287 146 178 230 –

Table 7.4: Same as Table 7.3, but requiring that the median significance exceeds 5 σ.

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+ 2+

0+ – 8 21 24 11
0− 9 – 22 22 36
1− 24 22 – 81 46
1+ 26 22 80 – 56
2+ 15 39 55 73 –

Table 7.5: Minimum number of observed events such that the median significance for
rejecting H0 in favor of the hypothesis H1 (assuming H1 is right) exceeds 3σ with
mH=350 GeV/c2.

distinguishing the “natural-parity” J=0+ and 1− hypotheses for mH=145 GeV/c2

requires only a dozen signal events for 3σ discrimination. For 200 GeV/c2, discrim-

inating 0+ from 0− is relatively easy, but distinguishing 0+ from 2+ is difficult. For

350 GeV/c2, contrariwise, 2+ is relatively easy to disentangle from 0+, but not from

0−.

7.4.2 Summary of Mixed Cases, CP, and Compositeness Dis-

crimination

We find that direct sensitivity to CP odd, parity odd XP interference effects, or

to CP odd, parity even XQ interference effects, will require signal samples about

H0 ⇓ H1 ⇒ 0+ 0− 1− 1+ 2+

0+ – 25 67 77 35
0− 26 – 68 68 118
1− 76 68 – 268 149
1+ 83 68 263 – 184
2+ 46 127 181 240 –

Table 7.6: Same as Table 7.5, but requiring that the median significance exceeds 5 σ.
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an order of magnitude larger than considered here. We have also observed that with

much smaller statistics it may be possible to conclude that a mix ofX and P (orX and

Q) couplings is favored over just the pure X (i.e., 0+) or pure P (i.e., 0−) couplings

alone. Such a conclusion would be tantamount to demonstrating CP violation in

the Higgs sector. However this scenario relies on large CP violation, and even in this

favorable case one cannot tell an X and P mixture from an X and Q mixture without

more data than what is required to establish discovery.

In the case of a composite Higgs, it may be conceivable that the Higgs is as

“soft” as a pion, in the sense of having an inverse radius and a mass of comparable

magnitude. In this scenario we have seen that the angular distributions associated

to the X and Y couplings are similar after integrating over the decay angles. As a

result there can be strong destructive interference between these contributions. For

our lighter mass benchmarks we find good discrimination of pure 0+ from the mixed

composites. For the heavier mH=350 GeV/c2 example, discrimination based on decay

angles is poor unless the strong interference effects are present; here we also observed

that substantial enhancement or suppression of the HLL→ ZZ branching fraction

can provide another important discriminator.

For mixed cases, one could worry that certain combinations of exotic couplings

might let an HLL successfully masquerade as a 0+ Higgs, even when all the pure case

exotics are excluded. For spin 1 HLLs we have shown that this does not happen. In

fact we find that when we have an SM Higgs, the entire family of mixed coupling

spin 1 HLLs can be excluded at approximately the same expected level of significance

as for the pure 1− or 1+ cases. An even stronger result is that the general spin 0

hypothesis can be conclusively discriminated from the general spin 1 hypothesis, at

or close to the moment of discovery.

7.4.3 Confronting CMS Data

In our analysis we focused on decay information, exploiting an approximate factor-

ization between observables related to Higgs (or HLL) production and observables
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related to decay. The factorization is only approximate because of phase space accep-

tance effects and, in the case of spin > 0 HLLs, correlations between the initial and

final state particles. In a real data analysis one would want to include production in-

formation, which in turn would require a detailed knowledge of radiative corrections,

PDFs, and full detector simulation for the HLLs. While beyond the scope of this

study, such an analysis is currently being performed with CMS data.

The QCD corrections to the signal predictions for d2σ/dpT dη are large, as is

well-studied for the SM Higgs (see, e.g., [85, 119, 120] and references therein.) The

impact on the total cross sections is not relevant to our analysis, but the corrections

to the (pT , η) distributions will modify the phase space acceptance effects on the dis-

tributions of the final-state leptons. For the SM Higgs these corrections are included

at NLO in the CMS analysis, and a recent study shows that the effects of NNLO

corrections on the final-state lepton distributions are not dramatic [121].

There are electroweak radiative corrections that directly involve the final-state

leptons. For the SM Higgs these corrections have been computed and studied in

detail [122]; the corrections are of the order of 5-10% and cause a mild distortion of

the angular distributions. These effects are included in the CMS analysis, but they do

not introduce anything conceptually new to the methodology proposed in this study,

and their inclusion involves details of the experimental treatment of the vertex and

subsequent radiations by electrons and muons.

Preliminary CMS studies [123] have tested the simple 0+ and 0−1 cases, with the

NePe hypothesis test-statistic distributions shown in figure 7.24. At this stage, the

0− hypothesis is disfavored by more than 2 σ with respect to the SM Higgs. The

sensitivity of the hypothesis test is roughly consistent with expectations from the

mH = 145 GeV/c2 test case, summarized in Tab. 7.1.

Of course this is only the beginning in determining the identity of the putative

Higgs candidate. Our treatment of couplings and HLLs was not exhaustive, since

we have ignored gauge invariant operators with dimension greater than 6, have only

examined one case of spin 2 HLL, and have not even mentioned the possibility of HLLs

with spins higher than 2. In addition to the rich possibilities involving mixed scalars,
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4.5 Tests of different spin-parity hypotheses 29

pseudo-scalar hypothesis 0− with a CLs value of 2.4%.
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Figure 19: Expected distributions of the test statistic comparing the signal JP hypotheses: 0− vs
0+. The observed value is indicated by the arrow.

Figure 7.24: Expected distributions of the NePe test statistic comparing the the JPC

hypotheses 0− and 0+. The observed value, calculated using CMS data in the 4` final
state, is indicated by the arrow [123].

compositeness and gravitons there may be more exotic possibilities to consider.
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Part II

Symmetries Beyond the Standard

Model
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Chapter 8

Beyond the Standard Model
Physics: Motivations and
Possibilities

The Standard Model of particle physics has succeeded in describing the physical

world to a remarkable precision to energies up to the weak scale. To date there are

no significant deviations between experimental observations and the predictions of

the model. If the new boson observed by the CMS and ATLAS experiments proves to

be consistent with the Higgs, then the Standard Model will be complete. As we enter

an new energy regime with the LHC an important questions are what, if anything,

lies beyond the Standard Model (BSM)? The answer is currently unknown, but in

this chapter we discuss some reasons to expect that there is physics BSM and how it

could manifest itself in LHC collisions. New physics models that mitigate the perceive

shortcomings of the SM tend to involve new symmetries of nature; we discuss how

these symmetries, and the resulting phenomenology of new physics, can inform our

experimental searches for BSM possibilities.

8.1 The Aesthetics of the Standard Model

Despite its enormous theoretical and experimental success, the SM has several short-

comings. To begin with, there are a range of experimental observations that, while

not in contradiction with the SM, are not explained by it. The universe we inhabit
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is observed to be matter-antimatter asymmetric, and a dynamic explanation from

the early universe would require particles and interactions not contained in the SM.

Also within our universe, we have inferred the presence of dark matter which only

interacts weakly with the SM particles our world is composed of, and so far only

detectably through gravity. There is no particle candidate in the SM spectrum which

can account for the observed abundance of dark matter, implying that it is composed

of BSM particles. The observation of neutrino masses and mixings is, in some sense,

evidence of new physics by construction since we have not observed right-handed neu-

trinos and they don’t have a place in the SM. Each of these experimental conclusions

strongly implies the presence of BSM physics, but its nature is unknown.

In addition to experimental challenges to the completeness of the SM there are

aesthetic and theoretical aspects which suggest that there could be something beyond

it. According to our understanding of the SM, all of the masses and mixings of

fermions are free, unpredicted parameters. In the context of the SM, the number of

fermion generations appears arbitrary (although it is interesting to note that three is

the minimum for CP violation) and their masses span several orders of magnitude.

The corresponding Yukawa couples, all playing a similar roll in the theory, range from

order 1 to 10−6, for no apparent reason. Similarly, the difference in size of the gauge

couplings in unexplained. The unification of the weak and electromagnetic forces

is an important component in the SM; perhaps the complete theory of the universe

should include the unification of the electroweak and strong forces. Gravity is also not

included in the SM and is 1032 times weaker than the weak force, with its unification

an even more difficult prospect.

Perhaps the most instructive problem in the SM for divining the nature of new

physics comes as a direct consequence of the masses of the SM particles and the

difference in magnitude between the Planck and electroweak scales. If we consider a

Dirac fermion (f) in the SM, its mass mf come from its interaction with the Higgs

field (H). When the Higgs field gains a VEV the chiral symmetry of the fermion

is broken by a spontaneously generated mass term appearing in the Lagrangian. In

addition, an interaction term between the Higgs and fermion appears (−λfHf̄f). Just
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as the Higgs gives the fermion mass, this interaction term contributes to quantum

corrections to the Higgs mass through diagrams like the one shown in Fig. 8.1 (left).

The shift to the Higgs mass from that diagram is

∆m2
H =

|λf |2
16π2

[
−2Λ2

UV + 6m2
f log(ΛUV /mf ) + · · ·

]
, (8.1)

where ΛUV is the cutoff scale for the fermion momentum running in the loop and the

ellipses correspond to high-order terms in 1/λ2. The correction to the Higgs mass is

quadratically divergent in ΛUV , as are similar 1-loop diagrams coming from couplings

to the heavy gauge bosons and the Higgs’ self-interaction. The total effect of each of

these contributions on the physical Higgs mass at 1-loop can be summarized as

m2
H(phys) ≈ m2

H +
c

16π2
Λ2
UV , (8.2)

where m2
H is the parameter appearing in the Lagrangian, c depends on the various

coupling constants of the SM and ΛUV represents the ultraviolet completion of the

SM, or the scale up to where the theory is valid. If the SM is to provide a description

of nature all the way to the Planck scale, MP ∼ 2.418 GeV, then it naively seems

that the physical Higgs mass should be of this same order. Perturbative unitarity

arguments [124,125] imply nearly the opposite, that the mass should be smaller than

a few hundred GeV. The new boson discovered at 125 GeV by the CMS and ATLAS

experiments [7, 8], if it is the Higgs, would confirm this fact. These considerations

beg the question: how is the Higgs able to stay relatively light?

It is possible that the Lagrangian parameter mH cancels the large ΛUV term in

the right-hand side of equation (8.2) but if ΛUV is at the GUT scale ∼1016 this

would require mH to be fine-tuned to 1 part in 1026. This is known as the gauge

hierarchy problem. It is an issue of aesthetics and can be thought of as a question

of symmetry. The masses of the fermions are protected by chiral symmetry, in that

these masses break that symmetry, which in term protects them from quadratically

divergent cutoff contributions. Similarly, quadratic divergences to the gauge boson



143

H

f

H

f

H H

S

Figure 8.1: Examples of quadratically divergent Feynman diagrams contributing to
the Higgs boson mass.

masses are removed through gauge-invariant dimensional regularization, such that

they are prevented from being dragged to a high scale by the local gauge symmetries

of the SM. On the other hand, there is no such symmetry in the SM which protects

the Higgs mass. As a scalar, the number of degrees of freedom associated with a

massive and massless particle are the same and hence, its mass will be sensitive to

the UV completion of the theory in the absence of new BSM dynamics.

A new symmetry could keep the Higgs mass light by guaranteeing that the quadrat-

ically divergent 1-loop contribution is cancelled through the appearance of new par-

ticles in the theory with their own quantum corrections to the Higgs mass. If we

consider a massive scalar (S) which also interacts with the Higgs, through a term

−λs|H|2|S|2 in the Lagrangian, then this particle will also result in 1-loop correction

to the Higgs mass, illustrated in Fig. 8.1 (right), with the value calculated to be

∆m2
H =

|λf |2
16π2

[
−2Λ2

UV + 6m2
f log(ΛUV /mf ) + · · ·

]
. (8.3)

This contribution has an opposite sign relative to the fermion contribution; if there is

a relation between the couplings λS and λf fixes their relative values of the right type

the strongly divergent contributions from each particle will cancel. Such a symmetry

is supersymmetry (SUSY) [126, 127]. For every SM particle there is an additional

superpartner particle, with spin differing by 1/2, which is related by a new supersym-

metry between bosons and fermions. In this case, the supersymmetry protects the

scalar Higgs mass and ensures the cancellation of divergences.
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There are other possible approaches to new symmetries which result in similar

cancellations. Little Higgs [128,129] models introduce new strong dynamics at scales

above 10 TeV which include new same-statistic partners of the SM particles which

cancel divergent effects. Some BSM possibilities do not even require these cancella-

tions to mitigate the gauge hierarchy problem. Models of extra dimensions [130,131]

effectively reduce the the Planck scale by allowing gravity to propagate in a bulk

other than the four dimensions we are most familiar with, such that its magnitude is

geometrically reduced relative to the other forces. If this were the case, it could be

that the Planck scale and the weak scale are actually the same, and the size of the

extra dimensions puts ΛUV at the same scale as the physical Higgs mass.

Each of these BSM theories suggest possible solutions to the gauge hierarchy

problem through different approaches, but with strong similarities in their general

implications. They all indicate that there is a strong reason to believe that some-

thing new happens at the TeV scale. Whether it is TeV−1 extra dimensions, or new

symmetries manifested through new particles there should be new degrees of freedom

which only appear at these higher energies related to the stabilization of the weak

scale. As we shall see, the phenomenology of these BSM possibilities indicates that

we may be able to infer their existence from new physics searches at the LHC.

8.2 Symmetric Possibilities

8.2.1 Supersymmetry

Supersymmetry (SUSY) is a hypothetical symmetry between fermions and bosons. In

order to ensure cancellations to quadratically divergent contributions to scalar masses

a new superpartner is added for each of the SM particles. The simplest SUSY model

which reproduces the SM at the electroweak scale is the Minimal Supersymmetric

Standard Model (MSSM) [132], and is a direct symmetrization of the SM fields,

based on the SU(3)C × SU(2)L × U(1)Y gauge group.

Each of the SM particles are put into supermultiplets with their superpartners,
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which have the same gauge quantum numbers. The fermion fields are promoted to

chiral scalar superfields, with a SU(2) superfield for the left-handed fermions and a

singlet for the right-handed ones. Their scalar superpartners are sfermions (selectrons,

smuons, staus), with one for each chirality. Similarly the gauge bosons are put into

gauge superfields with their own fermionic superpartners, gauginos. The SM Higgs

SU(2) doublet becomes a doublet of left-chiral superfields. In order to give down-

type fermions mass a second left-chiral superfield must be introduced, giving a more

expansive Higgs sector than the SM. One of the SUSY Higgses is a light scalar,

resembling the SM Higgs. The gauge-eigenstate fermionic superpartners of the SM

analogues, winos and binos for theW andB fields, respectively, mix with the higgsinos

to form mass eigenstates: Neutral gauginos and higgsinos mix to give four neutralinos,

while the charged fields result in four charginos. An attractive feature of SUSY is

that the three gauge couplings unify at the GUT scale, potentially pointing towards

a unified theory.

In the SM, lepton and baryon number are conserved in all renormalizable inter-

actions. For the MSSM, this is no longer the case since there are now scalars which

carry these quantum numbers (the superpartners of the quarks and leptons) and B

or L violating renormalizable interactions are possible which are also invariant under

the SM gauge symmetries. The presence of such terms appearing in the Lagrangian

is strongly constrained by experiment, particularly B-violation would result in decays

of the proton, which are so-far unobserved. These terms can be forbidden by requir-

ing that the theory is invariant under a new parity-like symmetry called R-parity,

or matter parity. Under this new parity the the quark and lepton superfields are

odd, while the Higgs and gauge superfields are even. The conserved R-parity can be

expressed as

R = (−1)3(B−L)+2s , (8.4)

where s is the spin of the field. This conserved Z2 parity has important phenomeno-

logical consequences for observing evidence of sparticles. It implies that there must
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be an even number of superpartners in each interaction, implying that these sparticles

are produced in pairs in LHC collisions. This same restriction means that the lightest

supersymmetric particle (LSP) will be stable, unable to decay to SM particles. SUSY

with weak-scale LSPs could potentially give a particle interpretation of dark matter.

If produced in LHC collisions, the LSPs will escape the detector without interacting.

If SUSY exists, it must be a broken symmetry since sparticles with mass the same

as their SM partners have been excluded experimentally. This implies that there

are also supersymmetry-violating terms appearing in the Lagrangian. In order to

maintain the cancellation of quadratic divergences these are restricted to soft breaking

terms related to the scalar sparticle and gaugino masses. With these additional terms

the MSSM has more than 100 new masses, phases and mixing angles relative to the

SM.

Experimental search results are often interpreted in a simplified subspace of the

MSSM called minimal supergravity (mSUGRA) [133]. Supergravity refers to the

nature of SUSY breaking, which follows from a SUSY-violating hidden sector which

communicates only through gravity with the SM. In the minimal SUGRA model, the

first-two generation slepton and and gaugino mass matrices are assumed to be trivial,

as are the Yukawa coupling matrices, with no complex phases in any soft terms,

such that the full theory is described by only five parameters: Common soft mass

parameters m0 and m1/2 for the sfermions and and gauginos, respectively, a universal

trilinear coupling A0 for the Yukawa interactions, the ratio of the Higgs’ VEV’s tan β

and the sign of the Higgs mass parameter, µ. This tractable theory space is useful

for presenting experimental results and is often referred to as the constrained MSSM

or CMSSM.

There are a vast number of possible signatures for SUSY at the LHC. The hadron-

hadron collider environment implies that the cross sections for strongly interacting

sparticles will be larger than for the electroweak-inos. Heavy squarks and gluons

could be produced, decaying through lighter sparticles to SM particles like heavy

gauge bosons, leptons and jets. R-parity conservation leads to signatures of MET

from escaping LSPs.
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8.2.2 Little Higgs Models

An alternative approach to SUSY for explaining the lightness of the Higgs is a class

of possibilities called Little Higgs Models [134–138]. Here, the Higgs is constructed

as a pseudo-Goldstone boson of a nonlinearly realized approximate global symmetry,

analogous to the pions and kaons in QCD. In these theories a larger symmetry group,

like SU(5), is broken to a smaller subgroup, like SO(5). The broken symmetries result

in a pseudo-Goldstone multiplet. The larger symmetry group must contain two copies

of SU(2)×U(1) and two additional subgroups which contain generators transforming

like SU(2) doublets which commute with the former. It is then constructed that only

the combination of both weak gauge interactions breaks all global symmetries acting

on the Higgs, meaning the quadratically divergent contributions must involve both

couplings, and can only appear at two loops. The Higgs is radiatively stable up to a

cut-off of around 10 TeV while having gauge, Yukawa and self-interactions of order

one. This is accomplished, as in SUSY, by adding new partners of the SM particles

related by a new symmetry.

Like SUSY, some of the possible interactions associated with these Little Higgs

models conflict with experimental constraints. These interactions can be removed

by appealing to a new conserved parity, called T -parity. The new, heavy, particles

associated with one copy of SU(2)×U(1) are T -parity even, while the SM fields from

the other are T -parity odd. As for SUSY, this Z2 symmetry results in a potential

dark matter candidate, as the lightest T -parity odd particle will be stable and weakly

interacting. The dominant production mode in these models are new colored particles,

analogous to the squarks and gluinos in SUSY. Similarly, there can appear heavy T -

odd partners of the leptons and electroweak gauge bosons.

8.2.3 Extra Dimensions

Theories of extra dimensions feature a very different approach to explaining the hier-

archy between the electroweak and Planck scales. If the SM is confined to a four di-

mensional space, but there are additional dimensions in which gravity can propagate,
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the weakness of gravity can follow as a geometric consequence. These include models

of compact extra dimensions [139–145] and also with warped geometries, where the

hierarchy between scales is generated by large curvature of extra dimensions [146]. It

is also possible to embed supersymmetry, or other BSM symmetry theories into these

scenarios [147,148].

In models of compact extra dimensions with small enough size, the SM fields can

propagate in these compact dimensions resulting in a Kaluza-Klein (KK) tower of

excitations from each SM particle. At the first level, the SM bosons have a new

particle partner while each SM fermion has two. With one extra dimension, each

of these new particles is odd under a KK-parity which is a remnant of the broken

translational invariance in this fifth dimension. The lightest KK-odd particle is

weakly interacting and due to this conserved Z2 symmetry would be a candidate

for matter. At the LHC, a variety of KK odd partners could be pair produced

if additional interactions are present in the model, with mass spectra potentially

resembling SUSY.

8.3 BSM Phenomenology

While different in the physics they encompass, the phenomenological properties of

models which attempt to mitigate the gauge hierarchy problem are very similar. Each

introduces a spectrum of new particles which are partners with their SM counterparts

under a new symmetry of nature. In the cases where experimentally disfavored in-

teractions are removed by appealing to a further symmetry, each includes a new

conserved quantum number or parity. This feature is particularly desirable because

it means the lightest of these new particles is unable to decay to SM particles, so it is

weakly interacting and could maybe explain the dark matter scattered throughout the

universe. These BSM models also make predictions about the scale of new physics.

In explaining why the electroweak and Planck scales are not the same, they predict

the appearance of new, heavy degrees of freedom near the electroweak scale. In LHC

collisions, this could be manifested through the production of new, heavy particles
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which have exceeded the energy capabilities of previous accelerators. These particles

can interact with the SM in a variety of ways, leading to a rich collection of possible

BSM signatures.

In the searches for new physics described in chapters 9 and 10, two common

characteristics of these hypothetical events are exploited. As is the case for W and Z

particles, the decays of new massive particles can be identified by reconstructing the

mass, or a mass-sensitive variable, from the decay products detected in these event.

An excess of events at a particular mass not explicitly present in the SM would

indicate the discovery of a new one. Hence the scale of new physics can be used to

discover it. The conserved Z2 parities in these models imply that these new particles

must be produced in pairs, and that at the end of each of their the decay chains

at least one weakly interacting particle must appear (or disappear). This implies a

very particular topology for LHC events: two new massive particles each decaying

to a system of detectable SM particles and the appearance of missing transverse

momentum. The razor variables used in these new physics searches were designed

specifically to study this signature.

It can be argued that this Z2-parity-inspired topology is more general than the

models discussed. The existence of dark matter, without an SM explanation, indicates

that there is another type of matter that is yet to be identified. Its weakly interacting

nature suggests that if this new particle(s) is heavier than some of the SM particles

that there is a new, at least approximate, symmetry preventing its decay. The absence

of a discovery at previous experiments, operating at lower energies, implies that any

new particles which do interact with the SM have large masses. A light Higgs hints

that the SM should interact with new degrees of freedom around the TeV. Occam’s

razor implies that each of these indications of BMS phenomena should be related,

making searches at the LHC targeting this signature a well-motivated approach for

observing evidence of BSM physics with new particle spectra satisfying these general

characteristics.

Of course, the interactions of the SM are complicated, and the new physics which

could appear at the LHC might be no different. The models discussed all contain
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an additional copy of the SM, and have an enormous variety of possible interac-

tions involving new particles. General consideration about the production and decay

topologies of these models should be complemented by searching for anomalously

large numbers of SM particles in these events, like leptons, jets and gauge bosons,

which could come from the decays of new particles.
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Chapter 9

Razor Searches for Supersymmetry

In chapter 8 several theories of new physics were described which mitigate perceived

problems in the Standard Model, particularly related to the naturalness of the scales

appearing and the amount of fine-tuning of theory parameters necessary to realize

them. In each of these BSM theories, this is achieved by predicting new symmetries of

nature which generally imply the existence of new, undiscovered fundamental particles

and interactions which we would like to study at the LHC.

Of particular interest are theories that include a discrete Z2 symmetry, or a new

type of parity quantum number like R-parity in SUSY, T -parity in Little Higgs mod-

els and KK-parity in models with extra dimensions. These theories are phenomeno-

logically appealing since the Z2 symmetry often forbids interactions problematic to

precision electroweak constraints from appearing in the Lagrangian. Additionally,

these symmetries can prevent the lightest new particle from decaying, resulting in a

possible particle explanation for the abundance of dark matter in the universe. In

the following chapter, we describe a search for new particles associated with these

BSM possibilities using the CMS detector with 35 pb−1 of
√
s = 7 TeV pp collision

data. New event kinematic variables, denoted razor variables, are derived specifically

for discovering and characterizing new BSM particles through interactions motivated

by Z2 symmetries. We describe the phenomenology of the Standard Model in terms

of razor variables and how this is used to infer the presence or absence of anomalous
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events in our data sample in hadronic and leptonic final states. The results of this

search are interpreted R-parity conserving SUSY scenarios, putting constraints on

sparticle masses in hypothetical models.

9.1 Razor Kinematic Variables

In LHC pp collisions, a Z2 symmetry implies that new BSM particles can only be

produced in pairs. Once produced, each of these new particles can decay through

a cascade of SM particles, with an odd number of BSM particles appearing at each

decay step. These decays can proceed down the new particle mass spectrum until

reaching the lightest new particle which, since it is stable and will not decay to SM

particles, is weakly interacting and will not be detected. This general BSM event

signature is illustrated in figure 9.1.

S2

S1

p

p Q1

χ1

Q2

χ2

Figure 9.1: Z2 symmetry motivated BSM LHC event signature. Two massive parti-
cles, Si, are produced in a pp collision and each decay to a system of detectable SM
particles, Qi, and a system of weakly interacting particles, χi.

In the past years the development of kinematical variables that assist the discovery

of this type of event topology has been intense and rich [87,149–162]. In general, these

methods try to exploit one or more characteristic features of these events which can

distinguish them from similar ones with only SM particles. Coming from different

decays, the systems of visible particles Qi do not have to recoil against each other

in momentum, as they would for SM processes without weakly interacting particles

in the final state. Similarly, the presence of the particles represented by χi in these

BSM events can be inferred by looking at the imbalance of transverse momentum



153

among the visible particles.1 Finally, the fact that we haven’t discovered these new

particles in the past indicates that they are probably massive; the raison d’être for

these new particles and symmetries, explaining the relation between the weak and

Planck scales, implies they should generally have masses close to the weak scale. We

derive two new, complementary kinematic variables which are independently sensitive

to different distinguishing characteristics of these events, MR and R. The variable MR

is sensitive to the scale, or masses, of these new physics particles. The dimensionless

variable R, the razor, indicates the amount of transverse imbalance of momentum in

collision events, a signature of independent decay chains initiated by pair-produced

particles and decaying to weakly interacting particles.

9.1.1 The Scale of New Physics: MR

In order to derive the kinematic variable MR, we consider the simplest topology

corresponding to figure 9.1, where the interactions at the SiQiχi vertices are direct

two-body decays Si → Qiχi. This situation could represent, for example, the pair-

production of right-handed squarks where each squark decays directly to a light quark

and a weakly interacting, potentially massive, neutralino. If an event like this occurred

in an LHC collision, the momentum of the decay products Qi would be measured

(if if they are within the angular acceptance of the detector) while the particles χi

would escape undetected, taking their momentum with them. We assume here that

MS1 = MS2 ≡ MS and Mχ1 = Mχ2 ≡ Mχ. This means that, in each of these events,

there are two new types of particles, S and χ, each with an unknown mass.

What we would like to have is a procedure, event by event, for accurately recon-

structing the masses MS and Mχ. If these masses are sufficiently different from the

masses of the SM particles then we could use this information to distinguish events

with these two new particles present from SM background events, looking for excesses

at fixed values in the reconstructed MS and Mχ distributions. Unfortunately this is

1Since the interaction which produces the particles Si is initiated by the parton constituents of
protons, which do not carry all of the protons’ momentum, conservation of momentum will only
approximately hold among the visible particles in the directions transverse to the beam-line in a
collision event.
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not possible. Since the particles χi escape undetected the kinematics of the particles

MS and Mχ cannot be reconstructed using only the visible Qi decay products of the

the system. The reason is that the event is kinematically underconstrained by the

measurements we are able to make. As we shall see shortly, in this case the number

of kinematic degrees of freedom (d.o.f.), N , and the number of kinematic constraints

available in each reconstructed event, M , satisfy N −M = 4. This means that we

would need four more kinematic constraints to fully solve the system (possibly only

up to some number of discrete ambiguities); even if we knew the masses MS and Mχ

a priori we could not completely reconstruct these events.

With these considerations in mind, we can ask a slightly less ambitious question:

Is there a characteristic scale, related to MS and Mχ, that we can partially reconstruct

event by event? The answer is yes, and to understand what this characteristic scale is

we consider the different reference frames relevant to these types of events, illustrated

in figure 9.2.

~P∆
i

−~P∆
i

Si rest frame

Qi

χi

Si
−~βCM ~βCM

CM frame

S2 S1

√
ŝ

~βT
βz

lab frame

√
ŝ

Figure 9.2: The four reference frames describing the pair production of particles Si,
each decaying Si → Qiχi. (Left) In each of the respective Si rest frames the particles
Qi and χi are traveling with equal and opposite momentum, with the magnitude of
their momentum set by the particle mass differences. (Center) In the CM frame, the
two particles S1 and S2 are traveling with equal and opposite velocities βCM , with√
ŝ representing the S1 + S2 CM object. (Right) In the laboratory frame, the CM

system is traveling with a longitudinal velocity βz due predominantly to differences
in the longitudinal momentum of the interacting partons. In the transverse plane,
the CM system can have a nonzero velocity ~βT coming from other final state particles
recoiling against the CM system.

Since each Si is undergoing a two-body decay, the decay products are traveling

with equal and opposite momentum in the Si rest frame. If the masses MS and Mχ

are the same event by event, the magnitude of the decay products’ momentum in the
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Si rest frames is also fixed. Assuming that the objects Qi are approximately massless

we observe that

|~P∆
1 | = |~P∆

2 | =
M∆

2
≡ 1

2

m2
S −m2

χ

mS

. (9.1)

For this event topology, M∆ is the characteristic scale. It is the same for each event

of this type, and the momentum of the final state particles in the laboratory frame

will be related to its value. To calculate M∆ we must reconstruct an approximation

of the Si rest frames based only on our observations in the laboratory frame. This is

accomplished through a series of physics-motivated approximations which effectively

eliminate the extra unknown d.o.f. from the problem.

Let us denote the four-vectors of the particles Si as s1 and s2. Similarly, we

call the four-vectors of the Qi and χi particles qi and νi, respectively. Throughout

this discussion, superscripts on these four-vectors (and corresponding three-momenta)

indicate which reference frame they correspond to. In the S1S2 rest frame (CM frame)

the S1 and S2 four-vectors are given by

p[S1] ≡ sCM1 = MS γCM {1, ~βCM} = {ECM
S1

, ~s CM
1 } ,

p[S2] ≡ sCM2 = MS γCM {1,−~βCM} = {ECM
S2

, ~s CM
2 } , (9.2)

such that (s1 + s2)2 = ŝ = 4γ2
CMM

2
S, where ŝ is the usual Mandelstam variable

describing the hard partonic subprocess. The boost ~βCM , and corresponding γCM

indicate how far above the 2MS energy threshold the two Si are produced. We need

not consider off-shell production of the particles Si here.

In their respective Si rest frames (S-frames), the decay products of each Si have

four-momenta defined as

p[Qi] ≡ qSi =
M∆

2
{1, ûi} = {ES

Qi
, ~q S
i } ,

p[χi] ≡ νSi =
M∆

2
{RSχ,−ûi} = {ES

χi
, ~ν S
i } , (9.3)

where RSχ =
M2
S+M2

χ

M2
S−M2

χ
and each ûi is a unit vector. In the laboratory frame (l-frame),
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the momentum of the particles ~q l
i and ~ν l

i are related to their momenta in their

respective S frames through a series of Lorentz transformations. To move from the

rest frame of S1 (S2) to the CM frame, qS1 and νS1 (qS2 and νS2 ) are boosted to a frame

traveling at a velocity ~βCM (−~βCM) with respect to the S1 (S2) rest frame. Finally, to

move from the CM frame to the lab frame, each of the final state particles is boosted

to a frame traveling at a velocity ~βL = (~βT , βz), where ~βT and βz are the transverse

and longitudinal components of this boost, respectively. The transformations taking

the final state particles from their respective Si rest frames to the lab frame can be

schematically described as

qS1 , ν
S
1

~βCM−−→ qCM1 , νCM1

~βL−→ ql1, ν
l
1 ,

qS2 , ν
S
2

−~βCM−−−→ qCM2 , νCM2

~βL−→ ql2, ν
l
2 . (9.4)

This series of Lorentz transformations is equivalent to moving through the reference

frames of figure 9.2 from left to right. To calculate M∆ in the respective Si-frames we

would need to perform the inverse series of transformations to the particles Qi which

we have measured in the lab frame. With this goal in mind, we observe that the under-

constrained d.o.f. in this problem can be expressed in terms of these unknown boosts.

In the final state, the two escaping χ particles represent 4 + 4 = 8 unknown d.o.f.,

in that we don’t know their three-momenta and masses. The constraints MS1 = MS2

and Mχ1 = Mχ2 yield two constraints, while assuming conservation of momentum in

the direction transverse to the beam axis provides two additional constraints, leaving

four under-constrained d.o.f.. Viewing the problem in terms of the unknown boosts

~βCM and ~βL, we observe that these four d.o.f. are equivalent to the direction and

magnitude of ~βCM (three d.o.f.) and the longitudinal component of ~βL (1 d.o.f.).2

While these extra d.o.f. cannot be constrained by kinematic measurements, they can

be eliminated through approximations motivated by the underlying physics of these

events.

2If ~βCM and the longitudinal component of ~βL are known then conservation of transverse mo-
menta can be used to calculate the transverse part of ~βL up to a discrete ambiguity.
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In practice, |~βT | ∼ pCMT /
√
ŝ ≤ pCMT /2MS, where pCMT is the transverse momenta

of the CM system resulting from initial state radiation and underlying event particles.

Even though pCMT scales with
√
ŝ, the spectrum of |~βT | will get softer for increasingly

large values of MS. Motivated by expectations of large masses MS in the models we

are searching for we approximate ~βT → 0. Similarly, if the mass MS is sufficiently

large relative to the hadron-hadron collider energy
√
s, the particles S1 and S2 will

be mostly produced near the
√
ŝ ∼ 2MS threshold, such that γCM ∼ 1. The approxi-

mation γCM = 1 implies that the particles Si are produced exactly at threshold, with

~βCM → 0.

With the γCM = 1 approximation the Si rest frames and the CM frame are the

same, and we denote this reference frame the rough approximation frame, or R-frame.

In the R-frame the particles Qi satisfy the constraint

|~q R
1 | = |~q R

2 | =
M∆

2
. (9.5)

Additionally, with the ~βT → 0 approximation the R-frame is now related to the lab

frame by a single longitudinal boost, which we will denote βR. We can solve for βR

by using the constraint in equaton (9.5) and calculating the longitudinal boost that

will move the visible particles Qi to a reference frame where the magnitude of their

momenta is equal. We find that

βR =
|~q l

1 | − |~q l
2 |

ql1z − ql2z
. (9.6)

Finally, we define the R-frame mass, MR, as

MR ≡ 2|~q R
1 | = 2|~q R

2 | = 2

√
(|~q l

1 |ql2z − |~q l
2 |ql1z)2

(ql1z − ql2z)2 − (|~q l
1 | − |~q l

2 |)2
. (9.7)

If our approximations hold the R-frame will be equivalent to the two Si rest frames

and our variable MR will be equal to M∆.

We have derived a variable, MR, sensitive to the characteristic scale M∆ which
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we can calculate using only the visible particle momenta ~q l
i measured in the lab

frame. In the limit that our approximations hold, γCM → 0 and ~βT → 0 imply that

MR → M∆. We observe that MR is invariant under longitudinal boosts such that

even if γCM 6= 1, MR is independent of the true value of βz. In the following sections

we will examine the efficacy of this approximate reconstruction approach, testing the

other properties of MR with a collection of toy models.

9.1.2 The γCM = 1 Approximation

In order to understand how well our γCM = 1 approximation holds in practice we

must consider how γCM is distributed in reality and what happens to MR when

γCM 6= 1. To address the former question, we consider the simple model with two

scalar particles: Φ0 with zero mass and Φ1 with mass MS, where these scalars are

approximating the interacting partons and Si particles from figure 9.1, respectively.

We consider contact interaction pair production of Φ1 through a λ|Φ0|2|Φ1|2 vertex,

where λ is the dimensionless Φ2
0Φ2

1 coupling, which we set to 1 without a loss of

generality. The subprocess cross section is proportional to

σ̂(ŝ) ∝ λ2

√
1− 4M2

S/ŝ

ŝ
∝ λ2

√
1− 1/γ2

CM

γ2
CMM

2
S

. (9.8)

From equation (9.8) we observe that γCM = 1 is kinematically forbidden, and that

the cross section for the subprocess will decrease asymptotically as 1/γ2
CM .

Additional suppression of large values of γCM is caused by the parton distribution

functions (PDFs) in hadron-hadron collisions. Assuming the two initial state Φ0

particles are partons from colliding protons with momentum fractions xa and xb

respectively, and PDFs f1(x) and f2(x) we can write the total cross section as

dσ

dxadxb
∝ [f1(xa)f2(xb) + a↔ b]σ̂(ŝ = sxaxb) , (9.9)

where s is the proton-proton CM energy. Changing variables from xb to γCM through

the relation sxaxb = 4γ2
CMM

2
S and integrating over xa we find that the differential
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cross section with respect to γCM is given by

dσ

dγCM
∝
√

1− 1/γ2
CM

sγCM
×

∫ 1

4γ2
CM

M2
S

s

[f1(xa)f2(
4γ2

CMM
2
S

sxa
) + a↔ b]

dxa
xa

. (9.10)

In figure 9.3 we show the probability distribution function for γCM for
√
s = 7

TeV pp collisions, where we have numerically integrated equation (9.10) for qq̄-like (u

and sea quark PDFs) and gg-like production. We use PDF parameterizations of the

form xfi(x) = Aix
δi(1− x)ηi(1 + εi

√
x+ γix) +A′ix

δ′i(1− x)η
′
i with NNLO parameters

determined from a global PDF fit at Q2 = 1 GeV2 [163]. Larger values of MS result

in lower values of γCM , with all distributions peaking at approximately γCM ∼ 1.1

and falling quickly with increasing γCM . The PDFs are fast-falling functions of x,

resulting in a steeply-falling γCM distribution. We conclude that, for nonresonant

particle pair production, the γCM = 1 approximation is quite good.
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Figure 9.3: Distribution of γCM for qq̄-like and gg-like production at
√
s = 7 TeV for

different values of MS.

The exact dependence of the subprocess cross section on γCM will vary depending

on the nature of the interacting final and initial state particles in the 2 → 2 process,

but the resulting distribution of γCM should be qualitatively similar to the result

shown in figure 9.3: γCM exactly equal to 1 is kinematically forbidden, but values of
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γCM near 1 are preferred to larger values due to the falling subprocess and total cross

sections with increasing
√
ŝ =
√
sxaxb ∝ γCM .

In order to understand the behavior of MR when γCM 6= 1 we return to the

example introduced in section 9.1.1. Using the same notation, we again consider the

pair production of massive particles S1 and S2, and continue to use the approximation

~βT → 0, this time with γCM not equal to 1. We consider a toy simulation of S pair

production, with decays Si → Qiχi, where we have taken flat matrix elements for

the angular distribution of the Si decay products (decay axis randomly distributed

as a sphere in the Si rest frame). The resulting distributions of MR, for different

fixed values of γCM , are shown in figure 9.4. We observe that the peak value of

MR scales as γCMM∆, with the width of the MR distribution increasing with γCM .

Hence, in practice, the distribution of MR will peak near M∆, even when γCM 6= 1,

with resolution degrading with increasing γCM .
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Figure 9.4: Distribution of MR, in units of γCMM∆, for different values of γCM .
Distributions are normalized such that their maximum value is equal to one.

9.1.3 The Razor R

In section 9.1.1, we derived the kinematic variable MR which is sensitive to the mass

difference M∆ for events of the type shown in figure 9.1, a property that can be

used to distinguish these events from SM background processes. Unfortunately, for
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searches in most final states this is not sufficient to suppress large backgrounds; the

SM production cross section at
√
ŝ ∼ M∆ is generally much larger than the cross

section of the models we are searching for. In order to be able to identify events

with the production of new particles, we can exploit a characteristic of the class of

Z2 symmetry model we are looking for: pair production of particles each indepen-

dently decaying to a weakly interacting particle, leading to a transverse imbalance of

momentum in the event.

In order to understand how this property can be used to distinguish these events

from SM backgrounds, we consider a search for the pair production of squarks, each

decaying to a quark jet and a weakly interacting particle. The largest background to

this two jet and missing transverse momentum final state is QCD dijet production,

where nonzero missing transverse energy can result from instrumental backgrounds,

jet mis-measurements, finite detector acceptance and non-Gaussian tails in the de-

tector response, in addition to the production of neutrinos. To understand how the

variable MR will behave for backgrounds of this type we consider the simple case of

QCD dijet production in more detail. In the dijet rest frame, we express the two jets’

four-vectors as

k1 =

√
ŝ

2
{1, v̂} ,

k2 =

√
ŝ

2
{1,−v̂} , (9.11)

where
√
ŝ is the dijet invariant mass and v̂ is a unit vector. If we assume that the

Lorentz transformation from the dijet rest frame to the laboratory frame is simply

a longitudinal boost, βz, (the CM system has no transverse momentum) we find

that for this type of event MR =
√
ŝ. Therefore, MR will be distributed as

√
ŝ for

this background process, falling steeply, while the signal distribution will peak near

M∆. The question of whether or not we can identify signal events in the presence

of this background becomes a question of whether the effective dijet cross section is

sufficiently small for
√
ŝ in the range of the signal peak around M∆, which it is most

likely not.



162

Examining the expression for MR in equation (9.7), we see that there is additional

kinematical information in our events that we have not yet exploited. For example,

MR is independent of the azimuthal angle, ∆φ, between the two final state jets. In

QCD dijet events the jets should be largely back to back in the transverse plane,

with ∆φ peaking at π. On the other hand, the two jets in the SUSY signal events

result from the decay of two separate squarks, implying that their direction in the

transverse plane is largely independent of each other apart from spin-correlations and

effects resulting from ~βCM 6= 0. Hence, the distribution of ∆φ for signal events will

be significantly flatter than for the background. Rather than simply cutting on the

variable ∆φ, we incorporate this information into a new variable denoted MR
T .

In this particular final state, we assume that in signal events there are two escaping

weakly interacting particles χ1 and χ2 with four momenta νl1 and νl2, with each particle

“paired” with an observed jet with four-momenta ql1 and ql2, respectively. From these

four-vectors we define the variable M2S =
√

(1/2)[(νl1 + ql1)2 + (νl2 + ql2)2], which is

equal to MS for signal events. The only constraint we have on the four-vectors νli is

that the vectorial sum of their transverse momenta should be equal to the observed

missing transverse energy, ~M . Setting (νli)
2 = 0 (if only because we don’t know it a

priori) and minimizing M2S over νl1z and νl2z yields

min
νiz

M2S =
√
|~q l

1T ||~ν l
1T | − ~q l

1T · ~ν l
1T + |~q l

2T ||~ν l
2T | − ~q l

2T · ~ν l
2T . (9.12)

Motivated by the backgrounds we are considering, where missing transverse mo-

mentum often results from imperfect measurements of the jets’ momenta, we assign

half of the measured missing transverse momenta to each escaping particle such that

~ν l
1T = ~ν l

2T = ~M/2 and define MR
T as:

MR
T ≡ min

νiz
M2S

∣∣∣
~ν l

1T=~ν l
2T

=

√
| ~M |

2
(|~q l

1T |+ |~q l
2T |)−

1

2
~M · (~q l

1T + ~q l
2T ) . (9.13)

Like MR, the variable MR
T also contains information about the scale of the process we

are studying. If we assume that γCM = 1 then the MR
T distribution has a kinematic
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endpoint at M∆ for signal events. We note that MR
T is an additional measurement

of the scale of the process that uses information independent of the MR. Therefore,

rather than cutting on MR
T we form the dimensionless R-frame razor, R, as the ratio

of MR
T and MR, such that R ≡ MR

T /MR. For the signal process, the distribution

of R peaks near 0.5, since this is the ratio of two measurements of the same scale,

M∆, with an additional geometrical factor due to the fact that MR
T contains only

transverse information. For the QCD dijet background, if ~M = 0, then R is 0, for

any value of
√
ŝ.

As was discussed previously, there are several mechanisms for the measurement

of ~M to be nonzero in QCD dijet events. For example, one or both jets in the final

state could be mis-measured due to calorimeter noncompensation, uninstrumented

regions of the detector or weakly interacting particles, causing an imbalance in the

event and resulting in nonzero missing transverse momentum. To evaluate how these

possibilities affect the measured values for MR and MR
T in background events, we

return to equation (9.11) which describes the kinematics of the dijet system in it’s

CM frame. We now realistically assume that the measured jet momenta, qli, are

scaled relative to their true values, so that qli = fiki. Here, we are assuming that

the direction of the two jets is not changed, but rather that only a fraction fi of the

jets’ momentum is observed, where fi > 0, while 1 − fi is incorrectly interpreted as

missing transverse momentum. Additionally, without loss of generality we adopt the

convention f1 ≥ f2.

With these mis-measurements, we find that MR takes a value:

MR =

√
4f 2

1 f
2
2 ŝ(v̂ · ẑ)2

(f1 + f2)2(v̂ · ẑ)2 − (f1 − f2)2
, (9.14)

independent of the longitudinal boost, βz, that takes the jets from their CM frame

to the laboratory frame. The missing transverse energy can now be nonzero, with

~M = (f2 − f1)~k1T and MR
T can be expressed as

MR
T =

√
(f1 − f2)f1

ŝ(1− (v̂ · ẑ)2)

4
. (9.15)
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From equation (9.14) we see that these mis-measurements decrease the value of

MR, assuming that f1 . 1. Therefore the distribution of MR for the background will

not have events promoted to the tail of the distribution due to these types of mis-

measurements; instead, these mis-measurements will suppress the background MR

distribution. Furthermore, if we require that R > C, where C is some cut value, this

implies that CMR < MR
T . To understand the effect of this cut, we change variables

(v̂ · ẑ)2 = cos(θ1)2 and f1 = f2 cos(θ2)2. With these substitutions, the inequality

CMR < MR
T can be re-expressed as

16C2 cos(θ1)2 cos(θ2)4 + sin(θ1)4 sin(θ2)6 < (9.16)

4 sin(θ1)2 cos(θ1)2 sin(θ2)2 cos(θ2)2 .

This inequality implies that if C ≥ 1/2, no background events of this type will satisfy

the requirement on R. If C ∼ 0.4, some events can pass, but MR
T will reach its

allowed maximum, for fixed
√
ŝ, at MR

T ∼
√
ŝ/5, with the razor inequality implying

that MR < MR
T /C .

√
ŝ/2. Hence for this type of background event to result in

MR ∼M∆, it must have
√
ŝ > 2M∆. Therefore, we observe that adding a requirement

on R to our event selection will remove most QCD dijet events with mis-measurements

of the type described above.

Another possibility resulting in nonzero missing transverse momentum in these

background events is that there are additional particles, whose vectorial sum of trans-

verse momentum is nonzero, and that escape detection. For example, jets resulting

from initial state radiation could remain unseen due to limited detector acceptance,

causing a transverse imbalance in the visible momentum in the event. In order to

understand the effect of this type of background on MR and MR
T , we consider a sim-

ple example. We denote the vectorial sum of the transverse momentum of particles

escaping detection as ~PT . Returning again to the QCD dijet example described by

equation (9.11), a nonzero value of ~PT will result in two significant changes to the

final state particle kinematics. Firstly, the missing transverse energy will be nonzero,

with ~M = ~PT . Secondly, this missing momentum will result in the dijet system un-
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dergoing an additional transverse boost when moving from the dijet rest frame to the

laboratory frame (any additional contribution to the longitudinal momentum imbal-

ance in the event is absorbed into the longitudinal boost, βz, which moves the dijets

from their CM frame to the laboratory frame). Specifically, the dijets are moved to

a frame traveling at a velocity ~β = ~M/(γ
√
ŝ), where γ = (1− |~β|2)1/2 and

√
ŝ is the

dijet invariant mass. In this case, MR is given by

MR = γ
√
ŝ

(
1− γ2(~β · v̂)2

(v̂ · ẑ)2

)−1/2

, (9.17)

while MR
T can be expressed as

MR
T ∼

√
γβŝ(

√
(1− (v̂ · ẑ)2 + γβ)

2
, (9.18)

where the approximate equality holds up to order β2. We observe that that for fixed
√
ŝ, after applying a requirement on R, remaining background events will have MR

with an upper bound that goes as
√
γβŝ if the jets have a large transverse component

in their rest frame, otherwise as γβ
√
ŝ. Recalling that γβ = |~PT |/

√
ŝ, we observe

that the asymptotic behavior of these upper bounds can be re-expressed as |~PT | and

(|~PT |
√
ŝ)1/2, respectively. Hence, we see that in order for these types of background

events to populate the MR distribution in the neighborhood of some value of M∆, the

magnitude of the vectorial sum of the transverse momentum of any missing particles

needs to be on the order of M∆, in addition to the invariant mass of the visible

particles independently having the same scale.

In the case of the jets plus missing transverse momentum final state, this example

is not only relevant for the QCD multijet background, but also for the so-called

irreducible background Z(νν)+dijets. Here, |~PT | ∼ pZT , and hence has an intrinsic

scale on the order of MZ . The distribution of MR still falls off exponentially for this

background when MZ .MR.

The variables MR and R2, used in conjunction, are powerful variables for distin-

guishing new physics events from the relevant backgrounds, exploiting both the scale
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of new physics and transverse momentum balance of events to suppress backgrounds

with spurious missing transverse momentum.

9.1.4 Generalizing to Inclusive Final States

To derive the variables MR and R we have not only made assumptions about the

kinematics of new physics events, but also about the underlying interactions within

them. Specifically, we have assumed that the pair produced particles have the same

mass and that they decay directly to a weakly interacting particle and visible SM

particle. In reality, new particles of different types, with different masses, can be

produced together and their decays can be complicated, and asymmetric, cascades

with multiple steps. In this section we explore how the kinematic variables MR and

R behave in these more complicated production and decay scenarios and develop an

approach for generalizing their application to events with more than two measured

particles in the final state.

We first return to the example described shown in figure 9.1, except we now allow

for the two massive particles, S1 and S2, to have different masses. Alternatively, we

observe that allowing the masses of the weakly interacting particles resulting from

the decays of S1 and S2 to be different will have a similar effect; the value of M∆ for

each decay chain is what dictates the kinematics of the event in the CM frame. Using

the notation of section 9.1.1, we will assume that each of the two decay chains has a

different value for M i
∆ =

M2
Si
−M2

χi

MSi
, such that M2

∆ = M1
∆(1 + δ) = M∆(1 + δ).

Assuming γCM = 1, we numerically integrate over flat matrix elements for the

Si decay angles to derive the distribution for MR, for different values of δ, which is

shown in figure 9.5. We find that MR peaks precisely at the geometric mean of M1
∆

and M2
∆. Hence MR, in some sense, is sensitive to the average characteristic scale of

the two different decay chains.

If the particles Si do not undergo direct two body decays, either by going through

a multibody decay or through an additional decay step with an intermediate massive

particle, then each of the two decay chains can produce more than one visible SM
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Figure 9.5: Distribution of MR, in units of M∆

√
1 + δ, for different values of δ.

Distributions are normalized such that the maximum value is equal to 1.

particle in the final state. To generalize the kinematic variables to these cases, events

with multiple particles in the final state are cast into a two object topology through

the formation of two mega-jets, or two objects made from grouping all of the observed

particles into two unique partitions. The two mega-jet four-momenta are defined as

the sum of four-vectors for all the assigned objects, requiring that at least one object

is assigned to each mega-jet. The combination of assignments that is chosen is the

one which minimizes the invariant masses of the two mega-jets summed in quadra-

ture. This choice of assignment combines particles together that are traveling in the

same direction, attempting to group the common decay products of each particle Si

together. MR and R are defined as before, except using the momenta of the two

mega-jets to construct the variables.

As an example, we consider a more complicated decay topology, shown in fig-

ure 9.6. In this scenario, the particles S1 and S2 have the same mass (MS), as do χ1

and χ2 (Mχ), except now one or both of the particles Si undergoes a two-body decay

to a visible particle, Qi+2, and another particle, Gi, with mass MG = MS(1− δ). The

particle Gi then decays to another visible particle, Qi, and χi. Numerically integrating

over all the decay angles in this scenario (using flat matrix elements) with γCM = 1,

and requiring R > 0.4, we derive the distributions for MR, shown in figure 9.7, where
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p
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χ1

Q2
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Q3

Figure 9.6: Two massive particles, Si, are produced in a pp collision. Si can decay
directly to a visible SM particles, Qi, and a weakly interacting particle, χi, as illus-
trated for the decay of S2. Alternatively, Si can decay directly to an intermediate
heavy particle Gi and a visible SM particles, Qi+2, with Gi subsequently decaying to
a visible particle Qi and a weakly interacting particle, χi, as illustrated for the decay
of S1.

we have assumed either one or both of the particles Si decays through an interme-

diate Gi. We find that, in both of these cases, the resulting MR distribution peaks

at M∆ =
M2
S−M2

χ

MS
, regardless of the value of δ (for the values considered here) and

irrespective of whether all of the visible decay products resulting from a particular Si

are assigned to the same mega-jet. Even in more complicated cases, the variable MR

is able to resolve the characteristic scale of the parent particle and weakly interacting

particle mass splitting.
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Figure 9.7: Distribution of MR when one (left) or both (right) of the particles Si
decays to an intermediate particle Gi with mass MG = MS(1− δ), for different values
of δ. Distributions are normalized such that the maximum value is equal to 1

The variables MR and R are well suited for searching for a general class of signals,
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including variations that violate the symmetries used to derive them. MR peaks at the

characteristic scale of events, reflecting the mass splitting between the new massive

particles initially produced and the weakly interacting particles they decay to. R

can be used in conjunction with MR, suppressing backgrounds at this characteristic

scale using the transverse shape of events, even in the presence of detector mis-

measurements and other experimentally difficult effects.

9.2 Razor Phenomenology and MR Scaling

In the canonical approach to searching for SUSY experimenters look for an excess of

events with large missing transverse energy indicating the presence of escaping weakly

interacting particles. The challenge is that the tails of the MET distribution are both

difficult to model and difficult to clean a priori from spurious instrumental effects. In

Section 9.1 we introduce a new approach to searching for SUSY phenomena using the

razor kinematic variables, MR and R, designed to compensate for these difficulties.

Like MET, the variable MR is sensitive to the characteristic mass scale of new physics

events. When used in conjunction with R, background events events with MR values

which are not reflective of their true scale can be suppressed. In order to understand

the phenomenology of the razor variables in signal and SM background events we

consider a collection of data and simulated events corresponding to the search to

the 2010 CMS search for SUSY described in section 9.3. The details of how these

events are selected in data or simulated, how physics objects are reconstructed and

the selection applied are explained in section 9.4.

We first consider simulated SM background events with jets and MET final states.

One of the most The MR distribution for some of the largest backgrounds to SUSY

searches are shown in figure 9.8. For each of these backgrounds, the MR distribution

peaks at its respective scale. QCD multijet events, with an intrinsic scale of order

ΛQCD, peak at the minimum scale set by the jet pT requirements applied to the

objects used to calculate MR. tt̄+jets and Z(νν)+jets events, which can both have

MET resulting from neutrinos in the event (from W decays for tt̄) peak at scales set by
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the top and Z masses, respectively. Without a requirement on R, the QCD multijet

yield is larger than the other backgrounds (and potential signals) by several orders of

magnitude, even at large values of MR. As described qualitatively in section 9.1.3, an

increasingly tight requirement on R suppresses backgrounds with MR values larger

than the true scale of the process. This effect is clear in figure 9.8; with tighter cuts

on R the tail of the MR distribution for these backgrounds is exponentially reduced,

falling increasingly steeper. With a moderate cut on R the QCD multijet background

is now the smallest background with MR above a few hundred GeV by at least several

orders of magnitude. The cuts on R reduce the tails of all the backgrounds in MR, but

significantly more so for backgrounds without neutrinos resulting from heavy boson

decays. Backgrounds with high transverse momentum weakly interacting particles,

like the signals we are searching for, can have large momentum imbalances in the

transverse events plane, yielding naturally large values of R in events with MR near

the true scale of the process.

Figure 9.8: MR distribution for simulated event samples, for different cuts on the
razor, R. (Left) QCD multijet events. (Center) tt̄+jets events. (Right) Z(νν)+jets
events.

The signal events we are searching for are expected to exhibit the same behavior in

the variables MR and R as the SM backgrounds, but at a new, higher scale. Here, we

consider two benchmark SUSY scenarios, LM1 and LM5, which are parameter points

in the mSUGRA class of models and defined in section B.1. The MR distribution,

as a function of R requirement, for LM1 and LM5 events are shown in figure 9.9

and 9.10, respectively. Also included in those figures are the sparticle mass spectra

for the two models. The signal models’ events are composed primarily of strong
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production of pairs of squarks or gluinos, which subsequently decay directly or through

cascades down the sparticle mass spectrum to the LSP, which is weakly interacting and

escapes detection. The correspondence between the behavior of MR and these spectra

is clear, with pronounced peaks corresponding to the squark/gluino and LSP mass

splittings. With increasing cuts on R the mass peak remains largely unchanged while,

like the backgrounds considered in figure 9.8, the right-hand tail of the distribution

falls increasingly quickly.
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Figure 9.9: (Left) the MR distribution after different R selections for the LM1
mSUGRA benchmark model. (Right) the superpartner spectra for the corresponding
model. The prominent MR peak corresponding to strong pair-production of squarks
and gluinos with masses ∼600 GeV decaying to 100 GeV LSPs. The peak position
indicates the characteristic scale of this mass splitting.

A search for evidence of new physics using the razor variables can be summarized

most succinctly by considering the two-dimensional MR vs. R razor plane and where

the events from each process are expected to appear, shown in figure 9.11. SUSY

events appear at larger values of MR due to the large mass splittings in the particles

produced while the SM backgrounds peak at their own, lower, mass scales. The pair of

weakly interacting particles appearing in the R-parity conserving SUSY events leads

to a transverse momentum imbalance and larger values of R, relative to backgrounds.

Identifying a region of phase space enriched in potential signal events and a small

amount of background is straightforward in terms of the razor variables. The following
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Figure 9.10: (Left) the MR distribution after different R selections for the LM5
mSUGRA benchmark model. (Right) the superpartner spectra for the corresponding
model. The prominent MR peak corresponding to strong pair production of squarks
and gluinos with masses ∼ 850 GeV decaying to 150 GeV LSPs. The peak position
indicates the characteristic scale of this mass splitting. A smaller MR peak appears
at a lower value from events with pair production of charginos and second mass
eigenstate neutralinos.

section describes an approach to predicting SM backgrounds at large MR/R in the

razor plane using control measurements in the low MR/R region.

9.2.1 MR Scaling

The MR distribution for simulated QCD multijet events, shown in figure 9.8 and 9.11

demonstrates a dramatic dependence on the value of the R requirement, with the slope

of the MR tail becoming steeper with increasing R cut. To confirm this predicted

behavior in data, we select a QCD multijet control sample using prescaled jet triggers

requiring at least two jets with an average uncorrected pT > 15 GeV. Because of the

low jet threshold, the QCD multijet background dominates this sample for low MR,

allowing us to study the MR shape dependence on R thresholds.

The MR distributions for events satisfying the QCD control selection, for different

values of the R threshold, are shown in figure 9.24 (left). We find that the MR

distribution is exponentially falling, after a turn-on at low MR resulting from the pT

threshold requirement on the jets entering the MR calculation. This turn-on can be
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Figure 9.11: The razor plane: MR versus R simulated event yields for L = 10 pb−1.
Shown are Monte Carlo simulated samples: QCD multijets, all simulated backgrounds
combined, W+jets, Z+jets, Z → νν̄+jets, t+X, di-boson, CMS SUSY benchmark
models LM1 and LM5, respectively and as labeled. Yields correspond to the baseline
HAD box selection described in section 9.4.

modeled as an asymmetric Gaussian, while the tail is well described by an exponential

function. We perform a likelihood based fit on the MR distribution for different R

thresholds, modeling it with the function

f(x) =





f1(x) = Ngause
− (x−µ)2

2σ2
1 x ≤ µ ,

f2(x) = Ngause
− (x−µ)2

2σ2
2 x ∈ (µ, t) ,

f3(x) = Nexpe
Sx x ≥ t ,

. (9.19)

where the parameters Ngaus and t follow from the others, which are floated in the fits,
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and the continuity conditions

f2(t) = f3(t) , f ′2(t) = f ′3(t). (9.20)
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Figure 9.12: (Left) MR distributions for different values of the R threshold for data
events in the QCD control box. Fits of the MR distribution to an exponential function
and an asymmetric Gaussian at low MR, are shown as dotted black curves . (Right)
The exponential slope S from fits to the MR distribution, as a function of the square
of the R threshold for data events in the QCD control box.

The dependence of the exponential slope parameter, S, on the R threshold is

shown in figure 9.24 (right). We observe that the slope parameter, indicating how

quickly the tail of the MR distribution falls, has a linear dependence with the square

of the R threshold requirement, such that

S = a+ b · (R threshold)2 . (9.21)

The R threshold shapes the MR distribution in a simple, and therefore predictable,

way. Adherence to this MR scaling implies that with knowledge of the parameters a

and b from equation (9.21) we can predict the the shape of the MR distribution at
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large R thresholds.

The qualitative similarities between the shapes of the different SM background in

the razor plane, illustrated in figure 9.11 is indicative of the fact that, at values of

MR past their intrinsic mass scale and at sufficiently high R threshold, each of the

different SM backgrounds exhibit this same MR scaling, albeit with different values

of the parameters a and b. Apart from QCD multijet backgrounds, which we see

populate the low MR/R region of the razor plane, the other backgrounds are processes

with energetic neutrinos and muons from massive vector boson decays (including W s

from top decays).

9.2.2 The Razor Box Concept

In some sense, the canonical R-parity conserving SUSY signature are events with

jets and MET. Strong production of new sparticles, if kinematically accessible, will

dominant over electroweak production at a hadron collider and the produced squarks

and gluinos will decay into jets and escaping LSPs. A search for these events could

proceed by vetoing the presence of reconstructed leptons but a peculiarity of the SM

is that a large portion of the background events would still have leptons in them. The

reason is that, at high R and MR, most of the background made up of events with

W (`ν) decays present, with high pT neutrinos resulting in large values of R. The

remaining background events also involve heavy vector bosons, through Z(νν)+jets

production. Conversely, squark and gluon decays could also result in lepton final

states, perhaps also through intermediate W and Z decays.

By classifying events according to their lepton content, in different boxes, we can

isolate background processes like W (`ν)+jets and use them to make inferences about

other kinematically similar background processes, like Z(νν)+jets events. Addition-

ally, we can search for signal events in these different final state boxes, benefitting

from this classification for signals with an abundance of leptons. The largest back-

ground appearing in each of the final states considered in the razor SUSY search is

events with on-shell W bosons which decay leptonically W → `ν. We recall that the
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razor variables MR and R are calculated using the momentum of two event mega-jets

which are constructed from all of the objects recorded in the event. This means that,

in order to result in at least two final state objects that can seed these mega-jets,

W (`ν) decays must be accompanied by other final state objects, such as associated

production jets or other top decay products in top+X events. In the former, the

yields of W+n jet events falls exponentially with increasing n (see Chapter 6 for

more information about Berends-Giele scaling), with a factor of 5-10 less events for

each additional reconstructed jet (depending on pT threshold). Whether the lepton

from the W decay is included among the objects making mega-jets dictates whether

this background is composed of mostly W (`ν)+1 jet or W (`ν)+2 jet events. The

value of R calculated in these events will depend largely on the kinematics of the

neutrinos, and hence on the W themselves, as will MR if decay leptons are included

in its calculation.

In the SUSY search described in section 9.3 we consider three different final states,

or boxes, based on the presence or absence of electrons and muons: the ELE, MU

and HAD boxes, respectively. The SM backgrounds appearing in each of these boxes

can generally be thought of as corresponding to the two different types of W decay

events described above where, in the HAD box in particular, events of both qualita-

tive types can appear. In order to understand how these two different background

contributions behave in our MR scaling model we consider W (`ν) events with two

different kinematic views of the decay leptons:

• The lepton (muon or electron) participates with its energy and momentum in

the mega-jet and MR reconstruction. This is the default approach used in the

SUSY search and corresponds to the MU and ELE boxes for single muon and

single electron events, respectively.

• The lepton is treated as “invisible” both in the mega-jet, MR and R recon-

struction. This treatment corresponds to the MU* and ELE* boxes for single

muon and single electron events, respectively. In this case, all of the W decay

products are effectively weakly interacting, meaning these events will behave



177

kinematically like Z(νν)+jets events. This correspondence is exploited in the

HAD box background prediction.

In the following, we describe the MR scaling behavior for each of the SM back-

grounds appearing in the ELE, MU, ELE* and MU* boxes, and how they are related

to similar backgrounds in the HAD box, using simulated events. These scaling rela-

tions and correspondences between final states form the basis for the strategy of the

CMS razor SUSY search.

9.2.3 MU* and ELE* Boxes: Leptons+Jets Processes with

the

Lepton Treated as Invisible

Some of the largest backgrounds in the HAD box are processes with a heavy vec-

tor boson’s transverse momentum escaping the detector, such as Z(νν)+jets and

W (µν)+jets. To derive control samples and study the behavior of kinematically sim-

ilar processes with respect to the variables R and MR, we implement a lepton box

selection in which we treat the identified leptons as “invisible,” kinematically mim-

icking the presence of an additional neutrino; we denote these selections the MU* and

ELE* Boxes for muons and electrons, respectively.

By treating leptons as invisible in W (`ν)+jets events we can create a source of

kinematically similar events to Z(νν)+jets, one of the largest backgrounds in the

hadronic final state. Technically, this is accomplished in reconstruction through two

different approaches for electrons and muons. In the case a muon is identified satis-

fying the muon box criteria, it is assumed that the muon did not leave a significant

calorimetric deposit, such that the reconstructed jet collection is not affected by its

presence. In the calculation of the MET the momentum from the muon is ignored,

effectively treating it as an escaping neutrino. For electrons, the treatment of the

MET reconstruction is the same, ignoring the electron momentum in its calculation.

If a reconstructed jet is found to match the direction of the electron three-momentum

within 0.3 in
√

∆η2 + ∆φ2 it is removed from the collection of objects used in the cal-
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culation of MR and the mega-jets, effectively removing the electron energy footprint

from among the reconstructed particles.
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Figure 9.13: (Left) MR distributions for different values of the cut on R for simulated
W (µν)+jets events satisfying the MU* Box selection. Fits to the exponential part
of the MR distribution are shown as dotted black lines. (Right) Value of the expo-
nential slope S from fits to the MR distribution, as a function of R cut for simulated
W (µν)+jets events satisfying the MU* Box selection.

The largest contributor to yields in the single lepton MU* and ELE* boxes is

W (`ν)+jets. Since the lepton does not participate in the construction of the hemi-

spheres, at least two additional high-pT objects must be present in the event, resulting

in the selection of events with W bosons produced in association with two or more

jets and MET from the recoiling W . The MR distribution for simulated W (µν)+jets

events, for different R cuts, is shown in figure 9.13 (left).

For MR values above a characteristic scale (determined by the minimum jet pT

requirement and the minimum Q2 for the partonic subprocess), the MR distribution

falls exponentially. The value of the exponential slope S that describes this exponen-

tial behavior exhibits MR scaling, as was the case for QCD multijet events, illustrated

in figure 9.13 (right).

The analogous figures for W (eν)+jets events are shown in figure 9.14. We observe

both qualitatively and quantitatively the same behavior in the MR distribution as a
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function of R. With the lepton ignored in the calculation of the kinematic variables

R and MR, the W (µν) and W (eν) processes are kinematically identical as expected,

and exhibit the same MR scaling behavior.
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Figure 9.14: (Left) MR distributions for different values of the cut on R for simulated
W (eν)+jets events satisfying the ELE* Box selection. Fits to the exponential part
of the MR distribution are shown as dotted black lines. (Right) Value of the expo-
nential slope S from fits to the MR distribution, as a function of R cut for simulated
W (eν)+jets events satisfying the ELE* Box selection.

The signature of a heavy vector boson decaying into two neutrino-like objects

also reproduces the kinematic phase-space of Z(νν)+jets events contributing to the

background of the HAD box. The MR distribution for Z(νν)+jets events selected in

the HAD box is shown in figure 9.15 (Left). As expected, these events behave in a

nearly identical way to the W (`ν)+jets events selected in the MU* and ELE* boxes.

These similarities allow us to use the MU* and ELE* boxes to infer the shape of

the MR distribution and relative efficiency with respect to the R cuts for Z(νν)+jets

events.

Apart from W (`ν)+jets the other large background in the MU* and ELE* boxes

is tt̄+jets production with at least one W boson decaying leptonically. Kinematically,

these events events are very similar to the previously discussed processes, in that they

include a leptonically decaying W recoiling against jets. The MR distributions for tt̄
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Figure 9.15: (Left) MR distributions for different values of the cut on R for simulated
Z(νν)+jets events satisfying the HAD Box selection. Fits to the exponential part of
the MR distribution are shown as dotted colored lines. (Right) Value of the expo-
nential slope S from fits to the MR distribution, as a function of R cut for simulated
W (µν)+jets events satisfying the MU* Box selection and for Z(νν)+jets events that
satisfy the HAD Box selection.

events with a lepton satisfying the MU* and ELE* Box requirements are shown in

figure 9.16 and 9.17, respectively. As was the case for W (`ν)+jets events, the tt̄ MR

distribution falls exponentially once MR exceeds the relevant scale for the process,

with the slope of the exponential fall scaling with R2. The primary difference between

W and tt̄ events is the difference in the process’ scale. For example, if we consider

tt̄ events where both W ’s decay to leptons which are not observed in the detector

then kinematically these events are identical to the SUSY-motivated events which

we are searching for. In this case, the W s play a role analogous to the escaping

neutralinos in the canonical SUSY di-jet final state. Similarly, the two reconstructed

b-jets are not constrained to be back to back in the transverse plane (as is the case for

jets coming from squark decays for example). Hence, before falling off exponentially

these tt̄ events peak at a scale set by the top and W masses, analogous to the peaking

behavior of signal events.

Despite the differences in the intrinsic scale between W (`ν)+jets and tt̄+jets pro-
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Figure 9.16: (Left) MR distributions for different values of the cut on R for simulated
tt̄)+jets events satisfying the MU* Box selection. Fits to the exponential part of the
MR distribution are shown as dotted black lines. (Right) Value of the exponential
slope S from fits to the MR distribution, as a function of R cut for simulated tt̄+jets
events satisfying the MU* Box selection.
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Figure 9.17: ELE* Box selection and treatment of leptons. (Left) MR distributions
for different values of the cut on R for simulated tt̄+jets events satisfying the HAD
Box selection. Fits to the exponential part of the MR distribution are shown as
dotted colored lines. (Right) Value of the exponential slope S from fits to the MR

distribution, as a function of R cut for simulated tt̄+jets events satisfying the MU*
Box selection.
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cesses, we observe that their parameters b describing the R2 scaling behavior are

nearly identical. Comparing the MR exponential slope parameters for tt̄+jets events

with those for W (`ν)+jets in the MU* and ELE* Boxes, for example, we see that the

largest difference in the R2 scaling behavior of these slopes is in the parameter a. This

is the result of the W ’s from top decays having some intrinsic transverse momenta

on the order of (M2
top −M2

W )/2Mtop compared to the “intrinsic” transverse momenta

of the W in W (µν) events being smaller and resulting largely from the minimum jet

pT requirements in the mega-jet calculation. This difference in intrinsic W pT shifts

the MR
T distributions and R distributions relative to each other, acting as an effective

“R-offset” which results in the tt̄ slope being systematically steeper for W (µν)+jets

events, as indicated by the systematically larger value of a. Despite this difference,

the two processes have parameters b that are nearly identical.

The kinematic similarities between the previously discussed processes indicate

that any differences between simulated events and data will affect each of these pro-

cesses the same way in the context of the variables R and MR. With insufficient

integrated luminosity to resolve the R2 scaling behavior of tt̄ and Z events selected

in di-lepton boxes we instead infer the shapes of these backgrounds by directly mea-

suring the R2 scaling parameters for W (`ν)+jets events in data and deriving relative

data/simulation slope correction factors to apply to the shapes of the other kinemat-

ically similar backgrounds.

The values of the R2 scaling slope parameters measured in simulated events for

processes contributing to the MU* and ELE* boxes are summarized in Table 9.1.

Process / Box a b
W (µν)+jets / µ∗ Box (-95 ± 1) x 10−4 (-307 ± 9) x 10−4

W (eν)+jets / e∗ Box (-92 ± 1) x 10−4 (-282 ± 9) x 10−4

tt̄ / µ∗ Box (-614 ± 5) x 10−5 (-337 ± 5) x 10−4

tt̄ / e∗ Box (-603 ± 5) x 10−5 (-326 ± 5) x 10−4

Z(νν)+jets / HAD Box (-926± 8) x 10−5 (-289 ± 7) x 10−4

Table 9.1: Values of parameters describing the MR evolution with R2 for simulated
events of different processes selected with the MU* Box, ELE* Box and HAD Box re-
quirements. For the lepton boxes, leptons are treated as neutrinos, better reproducing
the HAD box kinematic configuration of Z(νν)+jets.
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9.2.4 MU and ELE Boxes: Leptons+Jets Processes with the

Lepton Treated as Visible

As mentioned earlier, one of the largest backgrounds in the HAD box is W (`ν)+jets

events. These events, with respect to R and MR, are of two qualitatively different

types. One component is the one discussed in the previous section; namely, W (`ν)

produced in association with two or more jets, with the charged lepton from the W

decay contributing minimally or not at all to the calculation of R and MR. Here, the

missing transverse momentum is essentially the W transverse momentum.

The other W (`ν)+jets background component to the HAD box results from the

lepton giving a nontrivial contribution to the calculation of the mega-jets and R/MR.

Since the collection of objects used to calculate R/MR is based on calorimeter deposi-

tions, this occurs when the W decays to an electron, or a τ which subsequently decays

either hadronically or to an electron. In each of these cases, part of the W decay is

reconstructed as a jet and contributes to the mega-jets going into the calculation of

MR.

In order to isolate a control sample of events with phase-space kinematically sim-

ilar to this “visible-lepton” background in the HAD box we implement a lepton box

selection in which we treat the identified leptons as “visible,” kinematically mimick-

ing this background; we denote these selections the MU and ELE Boxes for muons

and electrons, respectively. In this treatment, the identified lepton momentum con-

tributes to the calculation of MR or R and participates in the construction of the

mega-jets. This implies two technically different procedures for reconstructed muons

and electrons.

In the case a muon is identified satisfying the muon box criteria, it is assumed that

the muon did not leave a significant calorimetric deposit, such that the reconstructed

jet collection is not affected by its presence. Given this consideration, we include the

muon in the list of objects used in the construction of the mega-jets without concern

of redundancy in the jet collection. For electrons, if a reconstructed jet is found

to match the direction of the electron three-momentum within 0.3 in
√

∆η2 + ∆φ2
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it is removed from the collection of objects used in the calculation of MR and the

mega-jets and replaced by the reconstructed electron object. This is done in order to

prevent mis-calibration of electrons when they are included in the jets collection and

calibrated as such.

The backgrounds in the single lepton ELE and MU Boxes are essentially the same

processes that appeared in the ELE* and MU* Boxes, with W (`ν)+jets being the

largest. Since the lepton is included in the mega-jet and MR reconstruction, this

background is predominantly composed of W bosons produced in association with at

least one hadronic jet. This results in the W (`ν) yields in the ELE and MU Boxes

being larger relative to those in the ELE* and MU* Boxes, respectively for smaller

values of MR. At the same time, this also implies that the observed MET in the

event will result predominantly from the escaping neutrino only, rather than both of

the W decay products. Since the neutrino is the primary source of MET, and the

lepton comes from the same mother particle, we observe two different components to

W (`ν)+jets MU and ELE Boxes which can be understood as follows:

In one case, the decay lepton is sufficiently hard such that one of the mega-jets

contains a large contribution from this lepton. Here, increased lepton momentum will

roughly translate into increased MR. Simultaneously, the neutrino is coming from the

same W decay, so a harder lepton, on average, means a softer neutrino and a smaller

value of R. This direct anti-correlation between the two particles results in component

with a more steeply falling MR distribution relative to the W (`ν)+jets contribution

to the MU* and ELE* boxes which is predominantly W+1 jet production. We denote

this the 1st component of W (`ν)+jets in the MU and ELE boxes.

In the second case, there are at least two jets recoiling against the W boson. Here,

these two other jets are sufficient for forming two mega-jets, and the lepton needs

only have a transverse momentum exceeding the lepton box threshold requirement

(p`T > 15 GeV/c) and does not need to participate significantly in the construction of

the mega-jets for the event to yield a large value of MR. This can be achieved even

if the lepton is anti-aligned with the direction of the W ’s transverse boost, assuming

that this boost is sufficiently large (which is precisely the phase space of interest in the
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high R/MR plane). Hence, for this 2nd component of W (`ν)+jets there is no tug-of-

war between the neutrino and lepton resulting from the W decay, since the neutrino

can be directly aligned with the boosted W and the resulting MET will be roughly

proportional to the W pT , with a small offset correction due to the momentum of the

lepton which will detract from the MET.

The MR distribution for simulated W (µν)+jets and W (eν)+jets events selected

in the MU and ELE boxes are shown in figure 9.18 and 9.19 (top left), respectively.

We model the distributions with two different exponential components, such that

the exponential part, f3(x), of the background shape function of equation (9.19) is

replaced by

f3(x) = Nexp

[
eS1x + feS2x

]
. (9.22)

For simulated events we fit the MR distributions using this function, floating each

of the free parameters independently. The results of these fits for W (µν)+jets and

W (eν)+jets events are shown in figure 9.18 and 9.19. We observe that the fits identify

two distinct contributions to the MR distribution, and that both contributions feature

exponentially falling behavior with slopes that follow the R2 scaling seen in the MU*

and ELE* boxes. Comparing the MU and ELE Box results, we also see that this

fit identifies the same two components in the muon and electron cases, in that the

exponential slope parameters are inter-consistent.

This same two-component behavior is present in W (`ν)+jets processes contribut-

ing to the hadronic box when the lepton contributes to the calculation of MR and R,

i.e., when the W decays to an electron which does not satisfy the electron ID criteria

but makes a significant contribution to a reconstructed calorimeter jet or similarly if

the W decays to a τ which hadronizes and appears as a jet. In figure 9.20 and 9.21 the

results from 2-component exponential fits to these hadronic box samples are shown.

We observe that these fits identify the same two components in MR as in the MU and

ELE boxes for W (`ν)+jets, with inter-consistent values of the R2 exponential slope

scaling parameters.

A clear picture emerges as to the slopes parameters of the two components for
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Figure 9.18: W (µν)+jets in the MU Box. (Top left) MR distribution as a function of
R. Two-component fits are shown as dotted black lines. (Top right) The parameter
fMC describing the relative amplitude of the second W+jets component to the first,
as returned from the fit to simulated events. (Bottom left) Fitted values of the 1st

component slope parameter as a function of R2. (Bottom right) Fitted values of the
1st component slope parameter as a function of R2.
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Figure 9.19: W (eν)+jets in the ELE Box. (Top left) MR distribution as a function of
R. (Top right) The parameter fMC describing the relative amplitude of the second
W+jets component to the first, as returned from the fit to simulated. (Bottom) Fits
of the two slope parameters as a function of R2
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Figure 9.20: W (eν)+jets in the HAD Box. (Top left) MR distribution as a function
of R. (Top right) The parameter fMC describing the relative amplitude of the second
W+jets component to the first, as returned from the fit to simulated events. (Bottom)
Fits of the two slope parameters as a function of R2.
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Figure 9.21: W (τν)+jets in the HAD Box. (Top left) MR distribution as a function
of R. (Top right) The parameter fMC describing the relative amplitude of the second
W+jets component to the first, as returned from the fit to simulated events. (Bottom)
Fits of the two slope parameters as a function of R2.
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these W (`ν) processes. The f factor depends largely on the rate of W+1 jet to W +

≥ 2 jet events in the high R/MR region, and as a result is sensitive to the modeling

of the jet energy scale near the jet pT threshold of 30 GeV. Rather than assuming a

value for this parameter from data, we float it in the lower MR side-band of each of

the signal boxes.

In the kinematic region probed by the SUSY search the two-component behavior

in MR does not appear in the other large background processes in the MU, ELE and

HAD boxes. For each background process, we perform binned maximum likelihood

fits to the MR distributions, for different values of the R cut, fitting the distributions

with a single exponential component and then independently with a double expo-

nential function. We take the ratio of the likelihoods from the two fits and asses

the significance of the second exponential component. We find that only the four

processes discussed above have significant second exponential components (where we

assume that the likelihood ratio of these fits is distributed as a χ2(1) distribution).

For example, The MR distributions for simulated tt̄+jets and W (µν)+jets events in

the MU and HAD Boxes shown in figure 9.22 indicate that these distributions are well

described by a single exponential function. The reason for this can be understood by

looking at the slope parameters which describe the R2 scaling of each of these pro-

cesses. Comparing the values of the b slope parameters in these samples with those

of the second component from W (`ν)+jets events we observe good agreement. The

reason is that these processes only have a significant 2nd W (`ν)+jets component-like

contribution. For example, in the case of W (µν)+jets events selected in the HAD

box, the W decay muon cannot contribute significantly to the mega-jet construction

since it does not leave a significant calorimetric deposit, and hence cannot result in a

calorimetric jet. This implies that the W boson must be produced in association with

at least two jets in order to form two mega-jets, resulting in a kinematic configuration

equivalent to events constituting the 2nd W (`ν)+jets component. Similarly, for semi-

and fully-leptonic tt̄+jets events, the lepton from the W decay does not need to con-

tribute to the mega-jet construction since there are at least two other b-jets, decay

products of the second W and any additional initial or final state radiation which
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can form two mega-jets. Hence, these tt̄ events appear kinematically, with respect to

the variables R and MR, as a W boson, whose decay products escape the detector,

recoiling off of at least two jets.

The exponential slope parameters of the background processes to the MU, ELE

and HAD Boxes measured from simulated events are summarized in Table 9.2. The

kinematic similarities between these backgrounds indicate that any differences be-

tween simulated events and data will affect each of these processes the same way in

the context of the variables R and MR. With insufficient integrated luminosity to

resolve the R2 scaling behavior of tt̄ and events selected in di-lepton boxes we choose

instead to infer the shapes of these backgrounds by directly measuring the R2 scaling

parameters for W (`ν)+jets events in data and deriving data/MC slope correction

factors to apply to the shapes of the other backgrounds.

Process / Box a b
W (µν)+jets / µ Box (1st) (-126 ± 3) x 10−4 (-171 ± 3) x 10−3

W (µν)+jets / µ Box (2nd) (-58 ± 6) x 10−4 (-52 ± 5) x 10−3

W (eν)+jets / e Box (1st) (-124 ± 3) x 10−4 (-189 ± 4) x 10−3

W (eν)+jets / e Box (2nd) (-67 ± 6) x 10−4 (-52 ± 5) x 10−3

W (eν)+jets / HAD Box (1st) (-131 ± 3) x 10−4 (-119 ± 3) x 10−3

W (eν)+jets / HAD Box (2nd) (-48 ± 5) x 10−4 (-52 ± 4) x 10−3

W (τν)+jets / HAD Box (1st) (-132 ± 3) x 10−4 (-125 ± 3) x 10−3

W (τν)+jets / HAD Box (2nd) (-60 ± 3) x 10−4 (-43 ± 3) x 10−3

W (µν)+jets / HAD Box (-103 ± 1) x 10−4 (-43 ± 1) x 10−3

tt̄ / µ Box (-733 ± 9) x 10−5 (-450 ± 10) x 10−4

Single top / µ Box (-97 ± 2) x 10−4 (-670 ± 20) x 10−4

tt̄ / e Box (-721 ± 8) x 10−5 (-430 ± 10) x 10−4

Single top / e Box (-101 ± 2) x 10−4 (-620 ± 20) x 10−4

tt̄(µ+X) / HAD Box (-663 ± 8) x 10−5 (-459 ± 9) x 10−4

tt̄(no W → µν) / HAD Box (-735 ± 5) x 10−5 (-398 ± 6) x 10−4

Single top / HAD Box (-896 ± 9) x 10−5 (-550 ± 9) x 10−4

Table 9.2: Values of parameters describing the MR evolution with R2 for simulated
events of different processes selected with the MU Box, ELE Box and HAD BOX
requirements. Two sets of slope parameters are listed for processes with a significant
second component.
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Figure 9.22: (Left) MR distributions for different values of the cut on R for simulated
tt̄(µ + X) events satisfying the HAD Box selection. (Center) MR distributions for
different values of the cut on R for simulated tt̄ events satisfying the MU Box selection.
Fits to the exponential part of the MR distribution are shown as dotted black lines.
(Right) Value of the exponential slope S from fits to the MR distribution, as a function
of R cut for simulated W (µν)+jets and tt̄ events satisfying different selections.
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9.3 The 35 pb−1 CMS Razor Search for SUSY

Experimental limits from the Tevatron and LEP showed that superpartner particles,

if they exist, are significantly heavier than their Standard Model counterparts. Thus

proposed experimental searches for R-parity SUSY [164–168] at the LHC have focused

on a combination of two SUSY signatures: multiple energetic jets and/or leptons from

the decays of pair-produced superpartners, and large missing transverse energy from

the two lightest superpartners produced in those same decay chains.

S2

S1

p

p Q1

χ1

Q2

χ2

Figure 9.23: General R-parity conserving SUSY LHC event signature. Two massive
sparticles, Si, are produced in a pp collision and each decay to a system of detectable
SM particles, Qi, and a system of weakly interacting particles, χi.

Here, we present an inclusive search for SUSY based on the razor kinematic vari-

ables [169]. In this approach, all the reconstructed final state objects in each event

a grouped into two mega-jets, mimicking the the expected R-parity conserving sig-

nal topology of two pair-produced sparticles each decaying to a system of visible SM

particles and one or more stable, weakly interacting LSPs, illustrated in figure 9.23.

From the three momenta of these mega-jets we calculate, event by event, the razor

variables MR and R, which are derived in section 9.1

MR ≡ 2

√
(|~p j1|pj2z −|~p j2|p j1

z )2

(pj1z −pj2z )2−(|~p j1−|~p j2)2
,

MR
T ≡

√
| ~M |(|~p j1

T |+|~p
j2
T |)− ~M ·(~p j1

T +~p j2
T )

2
, (9.23)

R ≡ MR
T /MR ,

where ~p j1 and ~p j2 are the three momenta of the two mega-jets and ~M is the missing
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transverse energy. As described in section 9.2, the phenomenological properties of

these variables make them ideal for distinguishing between SM backgrounds and

SUSY collision events.

The variable MR is sensitive to the scale of events, such that for signal events of the

type shown in figure 9.23 it will resolve the mass splittings between the parent sparti-

cles Si and the masses of the weakly interacting systems of particles, χi. The variable

R is sensitive to the transverse imbalance of events, and will suppress topologies that

have less than two weakly interacting particles in the final state. This is accomplished

without making strong assumptions about the missing transverse energy spectrum or

any details of the intermediate decay chains. If the difference between the masses of

new sparticles and those of the SM are resolvable, SUSY events will appear at larger

values of MR and R than the vast majority of SM background events. Using the

phenomenological MR scaling of these backgrounds, as described in section 9.2.1, we

can make measurements of these background shapes and yields at low MR and R and

use this information to predict these same backgrounds in the high MR and R razor

plane where we could observe excesses of signal events.

The strategy and execution of the 2010 CMS razor SUSY search, performed on

35 pb−1 of pp collision data at
√
s = 7 TeV, can be summarized as follows:

1. Events are selected by triggers identifying events by the presence of high trans-

verse momentum calorimetric energy depositions or the presence of signals con-

sistent with leptons. This is described in section 9.4.1.

2. Jets and leptons are reconstructed and identified in these events, as described

in section 9.4.2.

3. The reconstructed objects in each event are combined into two mega-jets, which

are used to calculate the variables MR and R. Several baseline kinematic re-

quirements are applied to clean the event samples of mis-reconstructed events.

This procedure is described in section 9.4.3.

4. Events are assigned to boxes based on the presence or absence of a reconstructed
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lepton. This box partitioning scheme allows us to isolate individual background

processes based on final state particle content and kinematic phase space in

order to measure their shape and yield. The details of how each box is defined

and what measurements are made in each one are provided in section 9.5.

• ELE and MU Boxes: if there is a reconstructed electron or muon events

are assigned to the ELE or MU boxes, respectively. These selections, along

the razor variables, allow us to identify W (`ν)+jets background control

regions where we can measure the shape and normalization of this back-

ground and use it to predict W , Z and top quark backgrounds in the high

MR/R signal regions in each of the boxes

• HAD Box: Events without leptons are assigned here, and must also sat-

isfy the HT trigger signal selection trigger requirements. The backgrounds

populating this box include QCD multi-jets, Z(νν)+jets, W (`ν)+jets and

top events, some with charged leptons that did not satisfy the standard

CMS electron and muon selection.

• QCD control Boxes: For each of the ELE, MU and HAD boxes we also

define a QCD multi-jet control sample analogue with additional require-

ments designed to enhance this contribution. For the lepton final states,

we reverse the lepton identification requirements in order to get a multi-jet

enriched, and EWK background suppressed, sample of events with leptons.

In the hadronic final state, we use prescaled, low-threshold jet triggers to

select events in low MR/R kinematic phase-space, where the relative pro-

duction cross sections ensure us a pure QCD multi-jet sample. The control

samples are used to predict the QCD multi-jet background contributions

to the ELE, MU and HAD boxes.

5. The R and MR shape and normalization of various backgrounds are measured

in different box control regions. These measurements are used to predict the

SM backgrounds to the high R and MR signal regions in the ELE, MU and

HAD boxes, as described in section 9.6.
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6. The observed yields in the ELE, MU and HAD box signal regions are compared

with the predicted yields and used to make inferences about the presence or

absence of SUSY events in these data samples. section 9.7 explains how these

search results are used to constrain the parameter space of hypothetical SUSY

models.

9.4 Event Selection and Reconstruction

Throughout this analysis, we use two different sources of collision event samples. The

first are events triggered and reconstructed during 2010 pp collision running of the

LHC using the CMS detector. The second are Monte Carlo (MC) events samples,

where event generators are used to simulate the particles produced in proton collisions,

propagate these particles through a representation of the CMS detector, digitize the

hypothetical signals these particles would leave in the detector and reconstruct the

event as if it were recorded in data taking. The different event samples used in this

analysis are described in section B.1.

9.4.1 Trigger Selection

Events are recorded by the CMS detector if they satisfy one or more online trigger

requirements. These triggers are based on fast, approximate reconstruction of the

event that mimics later reconstruction requirements that will be applied in identifying

jets and leptons. In the 2010 CMS razor search we employ triggers based on three

different types of physics object based in data:

• Muon triggers: Events with high-pT muons are selected and recorded online

using the Level-1 muon trigger and the high-level trigger (HLT), which require

information from the muon chambers (both Level-1 and HLT) and the inner

tracker (just HLT). The HLT trigger paths used in this analysis consider HLT

muons in the |η| < 2.1 region with pT thresholds varying according to which

instantaneous luminosity trigger menu was deployed during the run. The HLT
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paths used, HLT Mu9, HLT Mu11 and HLT Mu15, with HLT pT thresholds of 9,

11 and 15 GeV/c, respectively, are all found to be fully efficient for muons

satisfying the offline identification and kinematic requirements.

• Electron triggers: High-pT electrons are selected and recorded online using

the Level-1 electron trigger and the HLT trigger which require information from

the ECAL (with coarse granularity at Level-1 and the full granularity and pre-

cise energy calibration at the HLT). Depending on the HLT menu deployed

during running, various electron trigger paths are used to efficiently select elec-

tron events. At HLT an ECAL cluster with ET > 15 GeV is required for trigger

paths, HLT Photon15 Cleaned L1R. In higher luminosity running, we use the

path HLT Ele15 SW CaloEleId L1R, which has additional shape requirements

on the HLT ECAL cluster. Each of these triggers is determined to be fully

efficient with respect to the offline electron reconstruction and identification

requirements.

• Jet triggers: Events with jets are selected and recorded online using the Level-

1 single jet trigger and the HLT di-jet trigger which require information from

ECAL and HCAL. The trigger HLT DiJetAve15U corresponds to a requirement

of two jets with arithmetic ET average above 15 GeV. These HLT jet energies are

not corrected for non-unity calorimeter energy response. For high-luminosity

running, these triggers were pre-scaled.

• HT triggers: The HT trigger paths used to select signal events in the HAD

box are recorded online using the Level-1 single jet trigger and additional HLT

requirements based on calculations of HT . HLT jets with uncorrected ET > 20

GeV are included in the HLT HT definition,

HHLT
T =

jets∑

i

Ei
T . (9.24)

Depending on the run period, three different HT threshold triggers were the low-

est threshold, un-pre-scaled trigger: HLT HT100U, HLT HT140U and HLT HT150U.
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section B.2 describes how the kinematic effects of these triggers are accounted

for in the analysis

9.4.2 Physics Object Reconstruction and Identification

9.4.2.1 Primary Vertex Reconstruction

Selected events are required to have a least one Primary Vertex (PV) reconstructed in

the event satisfying several conditions. The vertex must be constructed with at least

13 associated degrees of freedom (at least 14 tracks matched to this vertex) and must

be within a distance |∆z| < 25 cm from the beam spot along the beam axis. When

multiple PV are reconstructed in an event the one with highest associated
∑

track pT

is used to project physics object from when calculating their momenta.

9.4.2.2 Muon Identification and Selection

CMS muon identification is based on a number of quality criteria resulting from

muon candidate reconstruction and is designed to suppress the rates of non-muons

resulting in mis-identification. More details about muon reconstruction can be found

in section 3.5.

For the typical range of transverse momenta explored in this analysis, the muon

momentum resolution is dominated by the inner tracker measurements. A good con-

sistency between tracker and muon detector measurements is essential to reduce the

contamination from muons produced in decays in flight of hadrons and from punch-

through. For the muons in this search, each muon must be identified by two different

algorithms, one that starts from the inner tracker information (“tracker muons”), and

another one that starts from the segments in the muon chambers (“global muons”).

A requirement of χ2 per degree of freedom of < 10 is imposed on a global fit contain-

ing tracker and muon hits. The presence of at least two levels of muon stations in

the measurement is required to ensures a sensible momentum estimate at the muon

trigger level and to further suppress remaining punch-through and sail-through can-

didates, since these are unable to penetrate deeply in the iron yoke of CMS. For a
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precise estimate of momentum and impact parameter, only tracks with more than 10

tracker hits and at least one hit in the pixel detector are used. Cosmic ray particles

are rejected by requiring a transverse impact parameter distance to the beam spot

position of less than 2 mm. Furthermore, the track must have at least one pixel de-

tector hit. Dedicated studies of muons in cosmic runs show that the high-pT cosmic

contamination after these cuts is negligible in the present sample. More details and

studies on muon identification in CMS at
√
s = 7 TeV can be found in reference [170].

For the definition of the MU box in this search we require that the sum of the

transverse momentum of tracks in an isolation cone of 0.3 in ∆R =
√

∆η2 + ∆φ2

around the muon candidate track are less than 15% of the candidate momentum. In

addition to all of the above requirements, muons must have |η| < 2.1 and pT > 20

GeV/c.

9.4.2.3 Electron Identification and Selection

Electrons are identified in the CMS detector as clusters of ECAL energy deposits

matched to tracks from the silicon tracker. The reconstruction of electrons is described

in detail in section 4.3. In order to qualify as a reconstructed electron candidates must

satisfy a number of quality criteria based on the properties of its ECAL clusters, its

matched track and the inter-consistency of the energy and momentum measurements

of the two, respectively.

For electrons in this search, we require that candidates have an ECAL cluster

with ET > 20 GeV with |η| < 1.4442 for barrel (EB) clusters or 1.566 < |η| < 2.500

for endcap (EE) clusters. ECAL clusters are required to match tracks using an al-

gorithm [171] which accounts for possible energy loss due to Bremsstrahlung in the

tracker layers. Particles misidentified as electrons are suppressed by requiring the

track trajectory η and φ, extrapolated to the face of the ECAL from the interaction

point, to matches the position of the ECAL cluster η and φ. Additional misidenti-

fication is reduced by limiting the amount of HCAL energy measured in a cone of

∆R < 0.15 around the ECAL cluster direction and by requiring a narrow ECAL

cluster width in η. Misidentified particles, as well as real electrons arising from jet
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fragmentation, are suppressed by imposing isolation cuts: limits on the additional

sums of HCAL ET , ECAL ET , and track pT in a cone of ∆R < 0.3 around the elec-

tron candidate direction. Tracks and ECAL energy associated with the electron are

excluded from these sums. Limits range from 3% to 10% of the electron candidate

ET , depending on the subdetector and ECAL region.

9.4.2.4 Jet Identification and Selection and

Missing Transverse Energy Reconstruction

Jets are reconstructed from calorimeter towers which are composed of a 5 x 5 array

of ECAL crystals and a HCAL module. The energy depositions in these towers are

clustered into jets using the infrared and collinear-safe anti-kt jet algorithm [57] with

a cone size Rcone = 0.5 in the (η × φ) space. More details about jet reconstruction in

CMS events can be found in section 5.2. The jets are corrected for noncompensating

calorimetric energy response using Monte Carlo derived corrections, and they are

required to have a pT > 30 GeV threshold and be within |η| < 3.0.

The missing transverse energy is calculated as the negative transverse vectorial

sum of all of the reconstructed particle flow (PF) candidates in the event. The PF

reconstruction algorithm is described in section 5.2. Effectively, this collection of PF

candidates accounts for all of the reconstructed energy and momentum in each of the

CMS subdetector systems.

In addition to jets clustered from calorimeter deposits, we also consider jets clus-

tered from tracks (track-jets) [172] and PF candidates (PF-jets). Intermediate results

using these alternative jet types provide useful cross-checks to the primary calorime-

ter jets in the analysis, in that they rely on measurements from different subdetectors

and have different calibrations.
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9.4.3 Kinematic Requirements and Mega-Jet Reconstruction

Each event is required to have at least two reconstructed objects (jets or leptons) in

order to create two mega-jets. If there are more than two reconstructed objects in

an event every partition of the objects into two non-empty groups is considered. A

mega-jet is formed from the objects assigned in its partition by summing their four

vectors,

pnMJ =
∑

i∈n
pic , (9.25)

where the index n runs over the two mega-jet four vectors pnMJ and the index i

indicates the objects’ four vectors pic which are assigned to mega-jet n. Out of all

the possible partitions of the reconstructed objects into two mega-jets the one which

minimizes the mega-jet masses, (pnMJ)2, summed in quadrature is chosen, an algorithm

adopted from [173].

This choice of mega-jet construction algorithm implicitly maximizes the momenta

of the two mega-jets. On the other hand, the same choice leads to more balanced events

than other potential algorithms, in that the total momentum of the two mega-jets

p1
MJ + p2

MJ is also implicitly maximized. The net result is that alternative algorithms

could yield larger values of MR with smaller values of R, on average. In practice, we

find the algorithm to be quite stable and effective at rejecting background with the

kinematic variables of interest.

When constructing mega-jets, one can choose whether to include reconstructed

leptons in the final state among the visible objects used to build the mega-jets; al-

ternatively, the leptons can be treated as invisible and removed from consideration

in the calculation of the kinematic variables (as if they were escaping weakly inter-

acting particles). For backgrounds like W (`ν)+jets, the former choice yields more

transversely balanced mega-jets, and lower values of R, due to the fact that, since

they come from the same decay, harder neutrinos (and hence larger MET) will also
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produce leptons. For this background, when leptons are treated as invisible, the MET

corresponds to the entire W transverse momentum, similar to the case of Z(νν)+jets

events.

In this analysis, electrons are treated as visible, and included in the mega-jet

calculation in the default ELE box treatment, while muons are treated as invisible for

the MU box. This choice was made to maintain consistency with the reconstruction

of the kinematic variables at the trigger level, which is based on calorimetric objects

that are not sensitive to MIP muons. While the background in muon final states can

be artificially less constrained by the kinematic variables with this choice, this allows

us to use W (µν)+jets events to study and constrain the shape of Z(νν)+jets events

in the HAD box.

The longitudinal boost velocity that relates the laboratory frame to the R frame

described in section 9.1.1, βR, is calculated from the mega-jets momentum, ~p i
MJ , as

βR =
|~p 1
MJ | − |~p 1

MJ |
p 1
MJ,z − p 2

MJ,z

. (9.26)

If βR ≤ 1 the boost is well-defined, as is the variable MR, and we can include the

event in the selected event sample. A fraction of events have mega-jets that lead

to ill-defined configurations with βR ≥ 1. In order to minimize the frequency of

ill-defined events, we calculate βR for each possible pair of mega-jets when deciding

how to partition the objects in an event, considering only assignments that result in

βR ≤ 1, if one exists. We further require that βR < 0.99 in order to remove events for

which the variables used in the analysis would be singular, in particular rare QCD

multi-jet events that can have erroneous MR values. The efficiency of this requirement

for typical signal events is close to 100%.

This is the entirety of the baseline selection for the analysis. The razor variables

MR and R are calculated from the mega-jet’s momentum, event by event, and the

analysis consists of making measurements of and putting additional requirements on

these kinematic variables.



203

9.5 Control Regions and Boxes

9.5.1 Hadronic QCD Control Box

In section 9.2 we describe the phenomenological properties of the SM background in

terms of the razor variables, in particular MR scaling. The tail of backgrounds’ MR

distribution falls exponentially, with the slope of the decay set by the requirement on

R. The shape of the MR distribution for the QCD mutlijet background is particularly

sensitive to this R requirement, changing more dramatically than other backgrounds.

This is because these events have no source of high transverse momentum weakly-

interacting particles that are isolated from the visible SM particles in the event, unlike

backgrounds with on-shell W and Z bosons. This means that at larger values of MR

and R the rate of QCD mutlijet events is small relative to EWK and top backgrounds

while at low MR and R the mutlijet event yield dwarves the others by several orders

of magnitude. In order to measure the shape of this background in the razor plane,

which can be used to predict its contribution at large MR and R, we must be able

to select events at low MR and R values with extremely high efficiency so that the

shapes are not kinematically biased. This is not possible with the signal HT triggers

used to select events in the HAD box since the trigger requirement dramatically alters

the MR distribution in in the interval of interest for isolating QCD mutlijet events

(see section B.2).

We define a hadronic QCD control box by applying the HAD box base-line selec-

tion (lepton veto) and requiring a low-threshold jet trigger, HLT DiJetAve15U. The

trigger requires at least two uncorrected jets with average pT > 15 GeV, a threshold

low enough such that it doesn’t bias the offline MR distribution in the range required

for measuring the MR scaling parameters for QCD mutlijet events. Given the high

prescale of this trigger and the expected signal rates, there is no contamination from

signal events in the QCD control box. In fact, in the MR range considered for these

mutlijet shape measurements there is negligible contamination from any SM back-

ground process (EWK, top) other than QCD mutlijets, an observation discussed in

section B.8.
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With a pure sample of QCD mutlijet events without kinematic bias from trigger

requirements, we study the MR shape of these events and measure its evolution as a

function of R requirement. The MR distributions for events selected in the hadronic

QCD control box, for different values of the R cut, are shown in figure 9.24 (left). We

observe that the MR distribution, after an approximate Gaussian turn-on at low MR

resulting from the pT threshold requirement on jets entering the mega-jet calculation,

drops exponentially. The exponential slope, S, of the distribution scales linearly with

the square of the R requirement, the characteristic feature of the MR scaling described

in section 9.2.1 and exhibited in figure 9.24 (right).
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Figure 9.24: (Left and Center) MR distributions for different values of the cut on R
for events in data selected in the QCD control box. Fits to the exponential part of
the MR distribution are shown as dotted black lines. (Right) Value of the exponential
slope S from fits to the MR distribution, as a function of R cut.

In order better understand the MR scaling behavior appearing in QCD mutlijet

events we repeat the same set of measurements for events reconstructed with track-

jets and PF-jets. The results for these alternative jet types are shown in figure 9.25

and 9.26. We observe the same qualitative MR scaling of the slopes S.

If we parameterize the R requirement dependence on the MR exponential slope as

S = a+ b · (R requirement)2 , (9.27)

we can then compare the quantitative features of the MR scaling for QCD mutlijet
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Figure 9.25: (Left)MR distributions (using track-jets) for different values of the cut on
R for events in data selected in the hadronic QCD control box. Fits to the exponential
part of the MR distribution are shown as dotted black lines. (Right) Value of the
exponential slope S from fits to the track-jet MR distribution, as a function of R cut.
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Figure 9.26: (Left) MR distributions (using PF-jets) for different values of the cut on
R for events in data selected in the hadronic QCD control box. Fits to the exponential
part of the MR distribution are shown as dotted black lines. (Right) Value of the
exponential slope S from fits to the track-jet MR distribution, as a function of R cut.

events using different jet types. The values of the parameters a and b describing the

MR scaling of the slopes S for all jet types are summarized in Table 9.3.

Comparing the MR in these different jet types is interesting for a number of
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Jet Type a b

Calo Jets (-1911 ± 9) x 10−5 (-381 ± 4) x 10−3

Track Jets (-336 ± 3) x 10−4 (-306 ± 4) x 10−3

PF Jets (-187 ± 2) x 10−4 (-352 ± 5) x 10−3

Table 9.3: Measured values of the slope parameters a and b for different jet types in
the QCD control box.

reasons. The calorimeter jets which the razor SUSY search is based on are recon-

structed exclusively using the ECAL and HCAL while track-jets are clustered only

from tracks reconstructed in the inner detector. This means that the majority of sys-

tematic detector-related effects which could alter the MR and R distributions should

be entirely different between these two jet types. Similarly, PF-jets provide a use-

ful comparison to calorimeter jets in that they include information from other sub-

detectors apart from the calorimeters and are also calibrated independently to have

unity energy response. This allows for meaningful quantitative comparisons between

the scaling parameters of the different jet types.

The relative values of the parameter a between jet types is understood as the

ratio of the relative physics object energy scales. Jet energy scale (JES) corrected

calorimeter and PF-jets are calibrated so that the modal energy response is equal

to the true jet energy in simulated events. Raw track-jets are made only of charged

tracks, which only carry about 60% of a jet’s momentum, on average, with large jet-

by-jet fluctuations. This means that the momentum response of track-jets, relative to

the true jet energy is only ∼60% of that for PF-jets or calorimeter jets. Comparing

the a result of the PF and track-jets in the table above we measure

a(PF Jet)

a(track Jet)
=

187± 2

336± 3
= (55± 1) x 10−2 , (9.28)

in agreement with the expectations based on the relative energy response of the two

jet types. Correspondingly, the value of the a parameters for calorimeter and PF-jets

are indistinguishable. Energy scale dependencies are absorbed in the value of a. The

differences in b among the types of jets result from variations in the implicit phase

space requirements placed on jets in order to be reconstructed. The pT thresholds
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applied in order for each type of jet to enter their respective mega-jet calculations are

chosen to correspond roughly to the same particle-level jets (30 GeV/c for calorimeter

and PF jets, 15 GeV/c for track jets). This results in the similarities of measured

values b for different jet types. Residual differences in b encapsulate the differences

in geometrical acceptance and position/momentum resolution of the sub-detectors

contributing to the different jet reconstruction schemes.

With the MR scaling parameters a and b measured for QCD mutlijet background

event we can predict their MR slope for large R values, where we would like to

search for SUSY events. When measuring the slope parameters a and b we fit the

MR exponential slopes, as a function of R requirement, as if they were statistically

independent measurements. This approach neglects the fact that the dataset used in

each fit is a small subset of the one with slightly looser R requirement. We study the

effect of neglecting these statistical correlations in the fitting procedure in section B.4

and conclude that it is a small effect, with a correspondingly small systematic error

added to background yield predictions which rely on the a and b parameters, described

in section 9.6.

Finally, the HAD QCD control sample is useful for monitoring the stability of

SM backgrounds’ MR shape as a function of time and instantaneous luminosity. Sec-

tion B.7 discusses potential biases resulting from these effects and constrains them to

be negligible based on measurements in with this control sample.

9.5.2 ELE and MU QCD Control Boxes

The lepton identification requirements which define the ELE and MU boxes are opti-

mized to efficiently identify leptons coming from heavy boson decays while rejecting

leptons resulting from the hadronization and decay products of quarks and gluons

or mis-identified particles. These requirements heavily suppress the yields of QCD

multijet events in the lepton final state boxes. However, we cannot a priori conclude

that this multijet contribution to the SM background in our high MR R signal regions

is negligible. In order to infer the MR shape and scaling behavior of these lepton fi-
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nal state multijet events, we define lepton QCD control box requirements which can

isolate a pure sample of QCD multijet events in selected data which have trigger-ing

lepton candidates and kinematics similar to the backgrounds expected in the ELE

and MU boxes.

The ELE and MU QCD control boxes are defined by the same baseline require-

ments as the ELE and MU boxes, apart from the fact that the isolation requirements

on the leptons are inverted, resulting in a sample of multijet events with non-isolated

leptons. This is the same methodology used for the “anti-lepton” heavy flavor control

samples described in [174,175]).

The MR distributions for data and simulated QCD multijet events satisfying the

ELE box selection are shown in figure 9.27. A comparison between the MR shape for

simulated QCD multijet events in the ELE and ELE QCD control boxes demonstrates

that they are indistinguishable with the available simulated event statistics. We see

that the expected contribution of EWK and top backgrounds to the ELE QCD control

box sample is negligible relative to the QCD multijet yield. The MR distribution falls

exponentially.
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Figure 9.27: (Left) MR distribution for events selected in the ELE box for data with
QCD electron control selection and for simulated QCD events with default electron
selection and with inverted electron isolation selection. A cut of R > 0.1 is ap-
plied. (Right) MR distribution for the ELE box QCD control selection for data and
simulation.

We measure the MR scaling parameters for events selected in the MU and ELE
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QCD control boxes, with the MR shape and slope fits shown in figure 9.28 and 9.29,

respectively. The fit parameters a and b which describe the MR exponential slopes

in these lepton-enriched QCD multijet samples are summarized in Table 9.4 and are

used to constrain the contribution to the ELE and MU box event yields from this

background.
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Figure 9.28: (Left) MR distributions for different values of the cut on R for events in
data satisfying the QCD muon control selection. Fits to the exponential part of the
MR distribution are shown as dotted colored lines. (Right) Value of the exponential
slope S from fits to the MR distribution, as a function of R cut for data events
satisfying the QCD muon control selection.

QCD control selection a b

QCD HAD Box (-1911 ± 9) x 10−5 (-381 ± 4) x 10−3

QCD MU Box (-1576 ± 4) x 10−5 (-1224 ± 8) x 10−4

QCD ELE Box (-1717 ± 2) x 10−5 (-1902 ± 6) x 10−4

Table 9.4: e Box Slope Measurements (MC and Data)

The values of a and b for QCD multijet events appearing in the ELE and MU QCD

control boxes are not the same, due to differences in the kinematics of these final states

and the experimental treatment of the relevant reconstructed physics object.
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Figure 9.29: (Left) MR distributions for different values of the cut on R for events in
data satisfying the QCD electron control selection. Fits to the exponential part of the
MR distribution are shown as dotted colored lines. (Right) Value of the exponential
slope S from fits to the MR distribution, as a function of R cut for data events
satisfying the QCD electron control selection.

9.5.3 ELE and MU Boxes

The high MR and R part of the razor plane in the lepton final states is a region of

phase space where we will look evidence of SUSY sparticle production. As we saw in

section 9.5.1 and 9.5.2, differences in intrinsic scale and MR scaling behavior between

the SM backgrounds and hypothetical signal events mean that the relative yields

from different contributions can vary dramatically across the razor plane. In this

case, this allows us to identify a region in the razor plane in the ELE and MU boxes,

not including the region where we will look for signal events, where the background

is made up almost exclusively of W (`ν)+jets events. Hence, while searching for

new physics in one part of the razor plane we can measure the shape and yield of

background events in another.

Using the MU Box selection, we identify MR intervals for different R cuts where we

expect the yield W (µν)+jets events to be significantly higher than other background
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contributions. In particular, we are sensitive to the MR scaling parameters of the

1st component of this W (`ν)+jets background, with two distinct scaling components

results from events with different numbers of associated jets produced with the W

bosons. This two component phenomenology is discussed in section 9.2.4. The R2

dependence of the MR exponential slope is measured for these events and shown in

figure 9.30.
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Figure 9.30: (Left) MR distributions for different values of the cut on R for data events
satisfying the MU box selection. Fits to the exponential part of the MR distribution
are shown as dotted colored lines. (Right) Value of the exponential slope S from fits
to the MR distribution, as a function of R cut.

Here, the MR distribution is modeled with two independent exponential com-

ponents, simultaneously floating both slopes along with their relative and absolute

normalizations. From this fit we extract the slope parameters characterizing the expo-

nential behavior of the 1st W (`ν)+jets component. We observe that these exponential

slopes exhibit MR scaling behavior, in agreement with predictions, and find the values

of the parameters a and b which describe the R2 scaling to be in good agreement with

the values extracted from simulated W (µν)+jets events.

The differences (and their uncertainties) between the values of these scaling param-

eters measured in data and in simulated events are used to construct data/simulation

shape scale factors (SFs), ρDATA/MC, which are calculated as the ratio of the data and

simulation measurements for the parameters a and b. From the MU Box we find
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ρ(a)
DATA/MC
MU =

117± 3

126± 3
= 0.93± 0.03 ,

ρ(b)
DATA/MC
MU =

172± 4

171± 4
= 1.00± 0.03 .

This same procedure is repeated for W (eν)+jets events in the ELE Box. The

results of the two component exponential fit, along with the extracted 1st component

slope parameters are shown in figure 9.31. We observe R2 scaling behavior for the

slope of the extracted 1st W (eν)+jets component and find the values of the parameters

describing this scaling in good agreement with the extracted values from simulated

events. For the DATA/MC slope SFs we find from the ELE Box:

ρ(a)
DATA/MC
ELE =

125± 3

124± 3
= 1.00± 0.03 ,

ρ(b)
DATA/MC
ELE =

176± 4

189± 4
= 0.93± 0.03 .
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Figure 9.31: (Left) MR distributions for different values of the cut on R for data
events satisfying the ELE Box selection. Fits to the exponential part of the MR

distribution are shown as dotted colored lines. (Right) Value of the exponential slope
S from fits to the MR distribution, as a function of R cut.

The DATA/MC correction factors measured independently in the MU and ELE
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boxes can be combined, yielding

ρ(a)
DATA/MC
1 = 0.97± 0.02 ,

ρ(b)
DATA/MC
1 = 0.97± 0.02 .

These shape SFs are used to predict the shapes of backgrounds to the ELE, MU

and HAD boxes which are kinematically to theW (`ν)+jets events studied here. These

backgrounds are also predicted to exhibit MR scaling, with shape parameters a and

b taken from fits to simulated events (see section 9.2) and corrected with the shape

SFs derived from the ELE and MU boxes.

These SFs are used to predict the shape parameters of all the backgrounds to the

ELE, MU and HAD boxes, with the exception of the 2nd W (`ν)+jets components in

each box and Z(νν)+jets in the HAD Box. For these background processes, we can

perform measurements using the ELE* and MU* selections described in section 9.2.3,

where the reconstructed leptons are treated as if they were weakly interacting particles

in the calculation of R and MR. This means that the W (`ν)+jets events that make

up the majority of the background to the ELE* and MU* selections is kinematically

almost identical to the Z(νν)+jets and 2nd W (`ν)+jets component backgrounds.

We use the MU* box selection and lepton treatment in order to measure the

MR slopes of W (µν)+jets events in selected data. The fits of the MU* box MR

distribution, as a function of R cut, are shown in figure 9.32.

We find no significant second exponential component in the fit regions consid-

ered, and compare the MR scaling parameters with expectations from simulated

W (µν)+jets events satisfying the MU* box selection, observing that the SFs are

indistinguishable from one. We use these values to derive DATA/MC shape cor-

rection SFs for the 2nd W (`ν)+jets component and Z(νν)+jets events in the HAD

Box:
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Figure 9.32: (Left) MR distributions for different values of the cut on R for data
events satisfying the MU* Box selection. Fits to the exponential part of the MR

distribution are shown as dotted colored lines. (Right) Value of the exponential slope
S from fits to the MR distribution, as a function of R cut.

ρ(a)
DATA/MC
2 =

96± 2

95± 1
= 1.01± 0.02 ,

ρ(b)
DATA/MC
2 =

29± 2

31± 1
= 0.94± 0.07 .

The results of these DATA/MC slope comparison measurements are summarized

in Table 9.5.

Process / Box a b

DATA / MU Box (W (µν)+jets 1st) (-117 ± 3) x 10−4 (-172 ± 4) x 10−3

W (µν)+jets / MU Box 1st (-126 ± 3) x 10−4 (-171 ± 3) x 10−3

DATA / ELE Box (W (eν)+jets 1st) (-125 ± 3) x 10−4 (-176 ± 4) x 10−3

W (eν)+jets / ELE Box 1st (-124 ± 3) x 10−4 (-189 ± 4) x 10−3

DATA MU∗ Box (W (µν)+jets) (-96 ± 2) x 10−4 (-29 ± 2) x 10−3

W (µν)+jets / µ∗ Box (-95 ± 1) x 10−4 (-307 ± 9) x 10−4

Table 9.5: Comparison of parameters describing the MR evolution with R2 for MU,
MU* and ELE Box data and simulated events of different processes selected with the
same box requirements.
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9.6 Signal Region Yield Predictions and Observa-

tions

9.6.1 ELE and MU Box Background Predictions

In the ELE and MU final state boxes we define signal regions by applying additional

requirements on the variables MR and R, selecting events in the region of the razor

plane where we expect potential signal events to appear with suppressed background

yields. Without using observations of the event yields in these signal regions we

predict the expected SM background contribution to these yields; the compatibility

of these predictions to the actual, independent observations of events yields allows us

to make statistical inferences about the contributions from SUSY signal events.

The procedure for assembling the total SM background predictions in the ELE

and MU signal boxes can be summarized as follows:

• Calculate shapes in MR for each SM process using MR scaling parameters a

and b and the signal region R requirement. If the parameters a and b were not

measured directly in a data control box then we use the values measured from

simulated events (section 9.2) corrected with shape scale factors ρ derived from

kinematically similar control samples.

• Set the relative normalizations of the EWK and top backgrounds using process

cross section measurements from CMS in different final states than the ones

considered in this search.

• Set an overall normalization by measuring the event yield in a MR side-band.

• With the EWK and top backgrounds fixed, determine the normalization of

the residual QCD multijet background in the low MR region using the shapes

measured from the lepton QCD control boxes (section 9.5.2).

• Float the relative normalization of the first and second W (`ν)+jets component

in an intermediate MR side-band, orthogonal to the signal region.
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Here, we describe each of these steps in detail. In some cases, we briefly review

measurements and observations that are described in greater detail earlier in this

chapter.

The first step in the background prediction consists of setting the initial MR shape

of the EWK and top background components. The MR distribution for each of these

components is distributed (at sufficiently high MR) as a falling exponential, eS·MR ,

and the exponential slope S exhibits a dependence on the value of the R value that

can be described as

S = a+ b ·R2 , (9.29)

the characteristic feature of MR scaling, described in section 9.2.1. Each process

contributing as a background in the leptonic boxes is modeled as having different

values of the parameters a and b, which are measured in simulated event samples

(section 9.2). These MC measurements provide initial values for these parameters.

In the case of the W+jets background, we identify regions in the razor plane of

the different lepton boxes (ELE, MU, ELE*, MU*) where, because of selection and

kinematics, we can select a pure sample of W (`ν)+jets events and measure the MR

scaling slope parameters a and b from equation (9.29).

We compare the measured values of these parameters a and b between data and

simulated events, calculating DATA/MC correction factors ρ(a) and ρ(b) defined as

the ratio of the data and MC values of the parameters. This is done independently

for W (`ν)+jets events selected in each of the ELE, MU and MU* box selections.

We observe that, in data and simulated events, the measurements of a and b agree

between the electron and muon final states and between data and MC in each case.

This implies that the DATA/MC correction factors ρ measured for each of the boxes

are consistent with 1, with a precision set by measured errors of the data and MC

values of a and b.

The values of the ρ parameters measured in the ELE and MU boxes correspond

to regions of phase space where the background is composed almost entirely by the

first W+jet component. The ρ parameters from these two boxes are combined to
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give ρ(a)1 and ρ(b)1, DATA/MC scale factors that are used to correct the shape

parameters a and b measured for other, kinematically similar SM backgrounds in

simulated events. The scale factors ρ(a)1 and ρ(b)1 are used in the shape prediction

for all of the backgrounds in the ELE, MU and HAD boxes, except for the W+jets

second component and Z(νν)+jets in the HAD Box. For these two backgrounds, the

ρ parameters measured from W (µν)+jets events in the MU* box are used. In the

alternative MU* lepton treatment the muon is reconstructed as a “neutrino” in that

it is excluded from the calculation of R and MR as if it left no measurable momentum

in the detector. This reproduces the kinematic configuration of the W+jets second

component and Z(νν)+jets backgrounds, in that in each case there are at least two

reconstructed jets recoiling against an invisible, heavy vector boson.

For each background i, we correct the values of ai and bi measured in simulated

events by these parameters ρ, such that the values of these parameters used in the

background prediction is given by

ai = ρ(a)aMC
i , bi = ρ(b)bMC

i . (9.30)

These values are used to calculate, for a given R cut, the value of the MR exponen-

tial slope parameter for each background process according to equation (9.29). The

background shape prediction for each process i at high MR is defined by this slope

parameter and an additional normalization parameter Bi, such that the background

shape of process i can be expressed as

fEXPi (MR) = Bie
SiMR . (9.31)

For each process, before the distribution of MR becomes exponential it has a turn-

on region where it peaks at an MR value, mi, set by a characteristic scale for that

process and the jet pT and acceptance requirements. We find that this MR region

is well described by an asymmetric normal (Gaussian) distribution, with the widths

σRi 6= σLi . We use values of mi, σ
L
i and σRi measured in simulated events, as a function



218

of the R cut, to model this part of the background function for the box prediction.

The exponentially decaying portion of the background function is attached to the

asymmetric Gaussian peak by requiring continuity of the background function and its

first derivative in MR. It is important to emphasize that these asymmetric Gaussian

shape parameters derived from simulated events do not contribute to the background

predictions in the signal region in that all measurements and fits that dictate this

prediction are restricted to ranges where the MR distribution is well described by an

exponential function. Rather, this part of the prediction is included primarily to test

for closure of this background prediction method in the low MR region.

The shape of the MR distribution for each background process i is fully determined

by the parameters σRi , σLi , mi and Si (with corresponding systematic errors), except

for the W+jets second component processes appearing in each box, whose exponential

MR distributions are given by

fEXPi (MR) = Bi

[
eS

1iMR + fie
S2
iMR

]
, (9.32)

with values fi describing the relative normalization of the two components that are

of the order 10−3 to 10−2. We initialize each fi to the value observed in simulation

and ultimately float the values in fits to MR side-bands in data.

With the shapes of the MR background determined, the next step in the back-

ground prediction is to set the normalization, Bi, of each background. In general, the

elements entering the normalization of a particular background i can be factorized as

• inclusive cross section, σi

• lepton trigger/reconstruction/ID efficiency, ε`i

• Selection cuts efficiency (R cut), εRi

• Integrated luminosity, L

For the EWK and top backgrounds in the lepton boxes, the W , Z and tt̄ cross

sections measured by CMS are used in normalizations, with corresponding errors.
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The W and Z cross section measurements are performed in inclusive (with respect

to jet multiplicity) electron and muon final states [176] while the tt̄ cross section

measurement is performed in the di-lepton channel. In each of these cases, the data-

set overlap with the ones used in this analysis is negligible. The measured values of

these cross sections are summarized below:

σ(pp→ WX)× BF(W → `ν) = 9.951± 0.073 (stat)± 0.280 (syst)± 1.095 (lum) nb

σ(pp→ ZX)× BF(Z → ``) = 0.931± 0.026 (stat)± 0.023 (syst)± 0.102 (lum) nb

σ(pp→ tt̄) = 194± 72 (stat)± 24 (syst)± 21 (lum) pb .

For the initial normalization, B0
i , of a background process i we use values of ε`i

and εRi calculated from simulated event samples. ε`i is multiplied by a DATA/MC

correction factor, ρ, measured using the tag-and-probe method with Z(``) events in

data and simulated events [176]. The variables B0
i are expressed as a cross sections,

in units of pb. We assign their values by calculating the integral, for a given R cut,

of the MR distribution from where it transitions to an exponential shape to infinity

using simulated events, weighted to correspond to the expected yield for 1 pb−1 of

data and using the above cross sections. This same integral is calculated analytically,

as a function of B0
i , using the background shape function of equation (9.31) or (9.32).

We solve for the normalizations B0
i by requiring that the two integrals are equal. At

this stage, all the parameters describing the shapes and normalizations of the different

backgrounds contributing to the ELE and MU boxes predictions are specified.

The total background normalization at this stage is arbitrary, with the relative

normalization of different background processes set by measured cross sections and

parameters taken from simulation. The next step is to re-normalize the background

predictions using an MR control region in the data. We choose the region 125 GeV

< MR < 175 GeV in the ELE and MU Boxes to measure the event yield, N ` Box
DATA, for

different values of the R cut. In this interval the expected QCD multijet contribu-

tion is small and the dominant background process is W (`ν)+jets. We propagate a
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systematic error accounting for possible contamination from Z and tt̄ events by eval-

uating the relative contributions of each process to these event yields, as predicted

using the initial MC background normalizations. Errors on the MC efficiencies used

in this initial normalization are included. A summary of these numbers is presented,

for the MU and ELE Boxes, in Tables 9.6 and 9.7, respectively.

We compare N ` Box
DATA with the sum of the integrals of each of the functional EWK

and top background process predictions in the same interval, denoted A` Box
0 . The

ratio of these two numbers, A` Box
f is calculated as

A` Box
f =

N ` Box

A` Box
0

±
√
N ` Box

A` Box
0

⊕ σ(A` Box
0 )

A` Box
0

N ` Box

A` Box
0

. (9.33)

Process uncertainty

R > 0.4 NMU Box = 1237 AMU Box
f = 38.1± 2.4 pb−1

W (`ν)+jets MU Box 93% -
Z(``)+jets MU Box 1.4% 19%

top+X MU Box 5.2% 40%
R > 0.45 NMU Box = 743 AMU Box

f = 41.2± 3.1 pb−1

W (`ν)+jets MU Box 92% -
Z(``)+jets MU Box 1.3% 19%

top+X MU Box 7.0% 40%
R > 0.5 NMU Box = 389 AMU Box

f = 42.0± 3.8 pb−1

W (`ν)+jets MU Box 91% -
Z(``)+jets MU Box 1.2 % 19%

top+X e Box 7.5% 40%

Table 9.6: Fraction of the contribution to the sum of integrals AMU Box
0 for each

process, along with the fractional initial normalization. Measured values of NMU Box

and AMU Box
f are also listed.

The factor A` Box
f has dimensions of integrated luminosity and, given the conven-

tions of our initial normalizations, can be interpreted as measurement of the effective

total integrated luminosity of the selected data sample,

A` Box
f = L ·

(
εR,DATAW

εR,MC
W

)
, (9.34)
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Process expected yields uncertainty

R > 0.4 NELE Box = 1085 AELE Box
f = 36.3± 1.1 pb−1

W (`ν)+jets e Box 94% -
Z(``)+jets e Box 0.3% 19%

top+X e Box 5.5% 40%
R > 0.45 NELE Box = 596 AELE Box

f = 36.5± 1.5 pb−1

W (`ν)+jets e Box 93% -
Z(``)+jets e Box 0.2% 19%

top+X e Box 6.5% 40%
R > 0.5 NELE Box = 288 AELE Box

f = 35.8± 2.1 pb−1

W (`ν)+jets e Box 93% -
Z(``)+jets e Box 0 % 19%

top+X e Box 7% 40%

Table 9.7: Fraction of the contribution to the sum of integrals AELE Box
0 for each

process, along with the fractional initial uncertainty of that processes’ normalization.
Measured values of NELE Box and AELE Box

f are also listed.

where εR,DATAW and εR,MC
W are the R requirement efficiencies for W+jets measured in

data and MC simulated events, respectively. The consistency of the measured fac-

tors with the CMS measured integrated luminosity of 36.1 pb−1, listed in Tables 9.6

and 9.7, validates the two efficiencies used for the lepton boxes. The unfolding of

these efficiencies from the integrated luminosity isn’t required in the normalization

procedure in that the parameter A` Box
f is a measurement of the product of the in-

tegrated luminosity and of the DATA/MC correction factor which is applied to the

other EWK and top background predictions.

The final normalization of each of the EWK and top backgrounds in the lepton

boxes is calculated as the product of the initial normalization and the factors A` Box
f .

At this stage, we have a prediction for the shape and normalization for the entire MR

distribution for each of these backgrounds.

The next step of the background prediction focuses on the low MR region. The

EWK and top background predictions are fixed, in both shape and normalization,

with corresponding errors. Using the lepton box QCD multijet shapes measured from

the data (section 9.5.2) we constrain the contribution of QCD multijet events to the

ELE and MU box event yields by floating the normalization of this background in a
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fit to the low MR region 80 GeV < MR < 120 GeV. This MR interval is independent

of that used to normalize the EWK and top contributions. In these low MR fits, the

pdf is the sum of the QCD multijet and EWK/top predictions, where the shapes have

all been fixed to measured values and only the normalization of the QCD multijet

component is allowed to vary.

For R > 0.4 we find that the amplitude of the QCD component is consistent with

zero in both the ELE and MU boxes, which is consistent with MC expectations. This

same procedure is validated in closure tests covering the entire background estimation

described in section B.9.

Finally, to complete the background prediction we return to the predominantly

W (`ν)+jets region of the MR distribution just below the signal region. In a binned

likelihood fit in the region 200 < MR < 400 GeV we float the parameter f describing

the relative normalization between the two W (`ν)+jets components while keeping all

other background parameters fixed (shapes and normalizations). Because of the MR

interval considered, this fit is independent of the low MR QCD multijet, and these

two steps of the background prediction do not depend on each other.

Using the value of f that maximizes the fit likelihood in the MR sideband, with

corresponding systematic error as returned from the fit, the final background pre-

diction in the lepton boxes is obtained. This is a prediction of the inclusive MR

background distribution, where each background is represented by a function whose

shape and normalization have systematic errors corresponding to the various con-

tributing factors that have been discussed. Every component that goes into the final

background prediction is either measured directly from data or is inferred from val-

ues measured in simulated events multiplied by DATA/MC correction factors. Thus,

each of the systematic uncertainties entering the background prediction is extracted

using measurements from data. The final background prediction in the MU Box for

different values of the R cut is shown in figure 9.33. Similarly, The final background

prediction in the ELE Box for different values of the R cut is shown in figure 9.34.

In the lepton box signal regions, expected integrated yields are calculated as the

integrals of the functional background predictions, with corresponding systematic
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Figure 9.33: Final background predictions for the MU Box with (Left) R > 0.4
(Right) R > 0.5 (Bottom) R > 0.45. The size of the bands around the backgrounds
indicates the systematic uncertainties.
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uncertainties. The integrated yields for different R and MR cuts from data, with

the predicted yields, are summarized in Tables 9.8 and 9.9 for the ELE and MU

Boxes, respectively. We observe agreement between the predicted and observed yields

in all cases considered. A summary of the uncertainties entering these background

measurements is presented in Table 9.10.
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Figure 9.34: Final background predictions for the ELE Box with (Left) R > 0.4
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indicates the systematic uncertainties.

For the interpretation of the results in SUSY parameter space we choose the
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R cut /MR cut Predicted Observed

R > 0.40 / MR > 400 GeV 10.3 ± 3.1 9
R > 0.40 / MR > 500 GeV 2.27 ± 0.78 0
R > 0.40 / MR > 600 GeV 0.51 ± 0.19 0
R > 0.45 / MR > 400 GeV 3.4 ± 1.1 5
R > 0.45 / MR > 500 GeV 0.63 ± 0.23 0
R > 0.45 / MR > 600 GeV 0.12 ± 0.05 0
R > 0.50 / MR > 400 GeV 1.25 ± 0.46 3
R > 0.50 / MR > 500 GeV 0.18 ± 0.07 0
R > 0.50 / MR > 600 GeV 0.03 ± 0.01 0

Table 9.8: Predicted and observed yields for ELE Box with different R/MR cuts.

R cut /MR cut Predicted Observed

R > 0.40 / MR > 400 GeV 10.3 ± 3.6 18
R > 0.40 / MR > 500 GeV 2.33 ± 0.91 10
R > 0.40 / MR > 600 GeV 0.53 ± 0.23 4
R > 0.45 / MR > 400 GeV 2.68 ± 0.99 8
R > 0.45 / MR > 500 GeV 0.51 ± 0.20 3
R > 0.45 / MR > 600 GeV 0.10 ± 0.04 2
R > 0.50 / MR > 400 GeV 1.10 ± 0.45 3
R > 0.50 / MR > 500 GeV 0.17 ± 0.07 2
R > 0.50 / MR > 600 GeV 0.025 ± 0.010 1

Table 9.9: Predicted and observed yields for the MU Box with different R/MR cuts.

Parameter Description Relative Magnitude

Slope parameter a systematic bias from correlations in fits 5%
Slope parameter b systematic bias from correlations in fits 10%
Slope parameter a uncertainty from Monte Carlo 1%-10%
Slope parameter b uncertainty from Monte Carlo 1%-10%

ρ(a)DATA/MC measured from DATA 3%

ρ(b)DATA/MC measured from DATA 3%
Normalization systematic+statistical component 3%-8%

f extracted in MLFit (W only) 15%-30%
W/tt̄ cross section ratio CMS measurements (top only) 40%
W/Z cross section ratio CMS measurements (Z only) 19%

Table 9.10: Summary of non-negligible uncertainties entering the background predic-
tions for the MU and ELE Boxes.

selections which result in optimal expected (without appealing to observed yields)

reach in the CMSSM, described in section 9.7. For the ELE and MU boxes, we use
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the selection R > 0.45 and MR > 500. The SM process-by-process breakdown of the

background predictions for these cuts are tabulated in section B.5.

To test the robustness of this background prediction approach against potential

biases or oversights we have performed a number dedicated studies. Section B.3

explains studies of the potential for correlations between the lepton identification

requirements used in this analysis and the variables MR and R. We conclude that the

lepton identification does not bias the shape of the kinematic variables. Section B.4

evaluates the effect of neglected statistical correlations between fit samples in our

determinations of the shape parameters a and b. We assign systematic uncertainties,

shown in Tab. 9.10, with magnitudes derived in this study.

In section B.6 we evaluate whether the background predictions shown in Tab. 9.8

and 9.9 are biased and whether the errors we quote actually cover a 68% probability

interval. Our studies indicate that the central values we predict for backgrounds are

accurate and that the errors have their intended meaning. In general, the predictions

for background yields in the MR/R based are in good agreement with observations.

The largest discrepancies appear the the MU box. We find that, when taking into

account systematic uncertainties and Poisson sampling statistics, the observed yields

are consistent with statistical fluctuations around the predicted mean, within the

quoted uncertainties as described in section B.6.1.

Finally, we repeat the full exercise of the background prediction, including mea-

surements in control samples, on simulated event samples generated to have the same

yields as what we have observed in data. In this controlled environment, we can test

whether the method closes, in that it predicts the same background yields that are

put in. This simulation closure test is described in section B.9, where we conclude

that the method successfully closes.

9.6.2 HAD Box Background Prediction

The procedure for calculating the MR background prediction in the HAD box is

very similar to that for the predictions in the ELE and MU boxes, described in
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section 9.6.1. The added complication in the HAD box is that events are selected with

and HT trigger, with nontrivial thresholds ranging from 100 to 150 GeV throughout

LHC running and based on HLT jet energies that are not corrected for calorimeter

noncompensation. This results in a nontrivial shaping of the MR distribution for

backgrounds in the HAD box since the efficiency for an event to pass these HT triggers

depends strongly on MR, illustrated for simulated Z(νν)+jets events in the HAD box

in figure 9.35. We observe that the effect of this trigger inefficiency only extends up

to values of MR ∼ 400 GeV, such that it will efficiently select SUSY events, if they

are present in the event sample, in the signal regions. On the other hand, we need

unfold the effects of these nontrivial HT trigger requirements in the MR side-band

(MR values lower than the signal region requirement) if we would like to use this as

an additional control region.
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Figure 9.35: HLT HT100U trigger efficiency as a function of MR for simulated
Z(νν)+jets events that satisfy the HAD box selection and R > 0.5.

The procedure for assembling the total SM background predictions in the ELE

and MU signal boxes can be summarized as follows:

• Calculate unbiased (with respect to the HT trigger) shapes in MR for each SM

process using MR scaling parameters a and b and the signal region R require-

ment. If the parameters a and b were not measured directly in a data control box

then we use the values measured from simulated events (section 9.2) corrected

with shape scale factors ρ derived from kinematically similar control samples.
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• Set the relative normalizations of the EWK and top backgrounds using process

cross section measurements from CMS in different final states than the ones

considered in this search.

• Set an overall normalization by measuring the event yields in ELE and MU box

control regions.

• With the unbiased shapes and normalizations of the EWK and top backgrounds

fixed (with the exception of the 2nd W component fraction, which is varied),

we determine the normalization of the multijet background and parameters

describing the HT trigger efficiency as a function of MR (see section B.2) from

a maximum likelihood fit to the low MR control region of the HAD box.

The first step is executed in the same manner as for the lepton boxes (sec-

tion 9.6.1); each process contributing as background to the HAD box has its shape

predicted predicted for the signal region R requirement using the MR scaling rela-

tion described in equation (9.29). Each background is modeled as an exponential,

with the slope calculated from the parameters a and b (unique to each background

process) from equation (9.29). The parameters a and b are measured in simulated

events for each background process contributing to the HAD box (see section 9.2),

and these MC derived parameters are multiplied by correction factors ρ, according

to equation (9.30) which are derived from kinematically similar event configurations

in control regions (see section 9.5). The non-exponential part of the MR distribution

is described by an asymmetric normal distribution, with shape parameters measured

from simulated events. The MR interval used for the final fit in the HAD box is

chosen as to minimize any dependence on these shape parameters in the background

prediction (the predictions in the high MR signal regions are not sensitive to these pa-

rameters). The initial normalizations of each background process, B0
i , are calculated

in the same way as the analogous factors in the lepton box background predictions.

Because of the nontrivial HT trigger turn-on, we do not measure the overall back-

ground normalization in the HAD Box. We instead use the normalization factors

A` Box
f measured in the ELE and MU boxes. When using these measured normal-
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izations in the lepton boxes, we don’t need to account for lepton identification effi-

ciencies, since any dependence on them cancels when making predictions within the

same box and the MR shape is insensitive to them (see section B.3). In order to

apply these measured normalizations to predictions in the HAD box we must correct

for discrepancies in lepton reconstruction and identification between simulation and

data.

We measure the muon and electron reconstruction, ID and trigger efficiencies

using Z(``) events and the tag-and-probe strategy, finding values [176]: εµ,meas =

0.834 ± 0.010 and εe,meas = 0.753 ± 0.023. These measured values are compared

with the analogous values measured in simulated W (`ν)+jets events: εµ,MC = 0.829

and εe,MC = 0.776. Using these comparisons, we construct DATA/MC correction

factors ρ(ε`) that we use to correct efficiencies measured in simulated events. These

measurements describe these efficiencies for the inclusive VBTF selection with no

requirements on R/MR. With additional R/MR requirements these efficiencies change

by a few percent due to correlations between the lepton kinematics, the W boson

kinematics and the reconstructed values of R/MR. We use the lepton efficiencies

measured in simulated events for the more restrictive regions of phase-space, corrected

with ρ(ε`). We also include the difference between the inclusive efficiencies and those

from restricted phase space as a systematic error on the efficiency.

The efficiency corrected normalization factors, A` Box
corr , measured in the lepton

boxes are summarized in Table 9.11. We recall that these factors represent both a

measurement of the integrated luminosity of the data sample, but also a DATA/MC

correction factor for the efficiency of the (lepton unrelated) selection requirements.

We observe agreement between these measured effective integrated luminosities and

expectations, indicating that acceptance efficiencies related to R/MR requirements

are well modeled in the simulation.

Ultimately, the factors from the MU and ELE boxes are combined and used to

normalize all of the EWK and top background contributions, with the exception of

Z(νν)+jets. For this background, the corresponding normalization measured in the

MU* Box is used.
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Box / R cut A` Box
corr

MU* Box R > 0.40 42.0 ± 4.7 pb−1

MU* Box R > 0.45 39.8 ± 5.0 pb−1

MU* Box R > 0.50 39.4 ± 5.7 pb−1

MU Box R > 0.40 38.1 ± 2.4 pb−1

MU Box R > 0.45 40.9 ± 3.3 pb−1

MU Box R > 0.50 41.7 ± 4.5 pb−1

ELE Box R > 0.40 37.4 ± 1.8 pb−1

ELE Box R > 0.45 37.6 ± 2.1 pb−1

ELE Box R > 0.50 36.9 ± 2.6 pb−1

Table 9.11: Lepton efficiency-corrected normalizations, A` Box
corr , from measurements in

the lepton boxes.

We are exploiting the kinematic similarities between backgrounds in different fi-

nal state boxes, measuring normalizations in the lepton boxes in regions of the razor

plane that are nearly identical for the different boxes. As a result, any systematic

shortcomings in the Monte Carlo simulation description of R or MR acceptance effi-

ciencies or values of the exponential slope parameters (which should effect events in

the different boxes the same way) are accounted for in this normalization procedure

through DATA/MC correction factors.

At this stage, the unbiased MR shape and normalizations of the EWK and top

backgrounds in the HAD box are specified and fixed, with the exception of the param-

eter f relating the normalization of the W background 2nd component to the 1st. The

unbiased multijet background MR shape is calculated using the appropriate scaling

parameters measured in the HAD QCD control box, as described in section 9.5.1. We

multiply these unbiased predictions by HT trigger efficiency curves, fTRIG(MR | µ, λ),

with an example shown in figure 9.35. The parameters µ and λ describe the shape

of the efficiency curve in our model, and are specific to each background process. A

complete description of these trigger efficiency functions can be found in section B.2.

For Runs 2010A and 2010B the HAD box selects events using three different

HT threshold triggers: HLT HT100U, HLT HT140U and HLT HT150U. This means that

our trigger efficiency functions need to be integrated-luminosity-weighted averages

of the respective curves for the different triggers. The shape parameters µ and λ
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are measured in simulated events for each background process in the HAD box. In

order to account for differences between data and simulation we introduce additional

free parameters µEWK and λEWK which are common for all non-multijet background

processes and are used to scale the MC derived values of µ and λ.

The total HT trigger turn-on function which is multiplied with the unbiased MR

shape prediction can be expressed for the ith EWK or top background process as

F TRIG,EWK
i (x | µEWK , λEWK , ~µi, ~λi) (9.35)

=
NTRIG∑

j

εjfTRIG(x |µEWK , λEWK , ~µi, ~λi) ,

where ~µi and ~λi are the trigger turn-on parameters measured from simulated events,

independently for each process. The index j indicates which of the three HT trigger

thresholds is being referenced while the factors εj indicate what fraction of the HAD

box data sample was selected with each trigger.

By introducing the additional parameters µEWK and λEWK and allowing them

to float in a likelihood fit to the data, we permit our description of these turn-on

curves to reflect possible deviations in the behavior of these shapes between data

and simulation. For example, DATA/MC discrepancies in the jet energy scale which

change the relative scales between uncorrected HLT level jets (used in the HT triggers)

and the reconstructed jets (used in the construction of MR) would affect all the trigger

turn-on functions in a uniform way. These discrepancies would be absorbed into the

parameters µEWK and λEWK , allowing our modeling of these turn-ons to conform

to the data. Similarly, any systematic discrepancy between the estimated integrated

luminosity for which each trigger is used and the true value will be absorbed into

µEWK , and will also be reflected in the error on this parameter.

We introduce similar flexibility into our modeling of the QCD trigger turn-on

shapes by introducing additional parameters µQCD and λQCD and redefining the en-

semble of trigger turn-ons for QCD multijet events as
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F TRIG,QCD(x | µQCD, λQCD) =
NTRIG∑

j

εjfTRIG(x | (HTj/HT1)µQCD, λQCD) , (9.36)

where HTj denotes the HT threshold (in units of energy) for the jth trigger. Hence,

µQCD and λQCD are used to fully describe the shape of the QCD trigger turn-on

curves, with the additional constraints that λ is the same for each of the different

HT threshold triggers, with respect to these events, and that the µ parameters for

multijet event trigger turn-ons are related by the ratios of HT thresholds, conclusions

supported by observations in simulated QCD events (section B.2).

With all other elements (normalizations and shapes) fixed, the final HAD box

background prediction follows from a binned likelihood fit of the total background

shape to data in the interval 80 < MR < 400 GeV where the parameters µEWK ,

λEWK , µQCD, λQCD and a parameter AQCD, which dictates the normalization of

the QCD multijet background, are simultaneously floated in the fit. Additionally,

the parameter, f , describing the relative normalization between the two W (`ν)+jets

components, is floated.

The values of these parameters that maximize the likelihood agree with expecta-

tions from simulation. In particular, we find that the QCD multijet trigger turn-on

parameters, µQCD and λQCD, are in agreement with direct observations of the turn-on

shape in the QCD control box.

The values of the parameters floated in the fit which correspond to the maximum

of the likelihood, along with the errors on these parameters (as calculated from the

fit) are used to calculate the final background prediction and its error (including both

shape and normalization parameters). This allows for the uncertainty associated

with these trigger turn-on curves to be treated in a rigorous and consistent, relative

to manner with other uncertainties in the analysis.

The final HAD box background prediction for R > 0.5 is shown in figure 9.36. We

find agreement between the predicted MR distribution and the MR yields observed

in data, over the inclusive MR distribution. In particular, predicted and observed
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background yields in the high MR signal regions are summarized in Table 9.12. A

summary of the uncertainties going into these background predictions is listed in

Table 9.13.

MR cut cut Predicted Observed

MR > 400 GeV 25.3 ± 5.5 29
MR > 500 GeV 5.5 ± 1.4 7
MR > 600 GeV 1.09 ± 0.32 3

Table 9.12: Predicted and observed yields for different MR cuts with R > 0.5 in the
HAD Box.

Parameter Description Relative Magnitude

Slope parameter a systematic bias from correlations in fits 5%
Slope parameter b systematic bias from correlations in fits 10%
Slope parameter a uncertainty from Monte Carlo 1%-10%
Slope parameter b uncertainty from Monte Carlo 1%-10%

ρ(a)DATA/MC measured from DATA 3%

ρ(b)DATA/MC measured from DATA 3%
Normalization systematic + statistical component 8%

Trigger Parameters systematic from fit toys 2%
f extracted in MLFit (W only) 13%

W/tt̄ cross section ratio CMS measurements (top only) 40%
W/Z cross section ratio CMS measurements (Z only) 19%

Table 9.13: Summary of non-negligible uncertainties entering the background predic-
tions for the HAD Box.

We perform an ensemble dedicated studies to check that the HAD box background

prediction is unbiased and that the errors are estimated correctly (section B.6), that

the method closes for simulated event datasets (section B.9) and that lepton re-

construction and identification requirements do not bias shape and normalization

measurements between final state boxes (section B.3).
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9.7 Results Interpretation in SUSY Parameter Space

The predicted and observed yields from 35 pb−1 of data in the ELE, MU and HAD

box are summarized in Table 9.14. Since we observe no significant excess of events

beyond the SM expectations, we can make inferences about which SUSY models

can be excluded by these results in the cases where we would have observed more

events than we saw. These results are used to new physics possibilities through the

calculation of a model-independent 95% confidence level (C.L.) limit on the number

of signal events.

Final state box MR / R cut predicted yield observed yield
ELE box 500 GeV / 0.45 0.63 ± 0.23 0
MU box 500 GeV / 0.45 0.51 ± 0.20 3

HAD box 500 GeV / 0.45 5.5 ± 1.4 7

Table 9.14: Summary of predicted and observed yields used for SUSY interpretations

The likelihood for the number of observed events n in a particular box is modeled

as a Poisson function, given the sum of the signal, s, and the background events, b.

A posterior probability density function for the signal yield is derived using Bayes

theorem, assuming a flat prior for the signal and a log-normal prior for the background

shown in Fig 9.37 for each of the final state boxes. The different posteriors reflect the

predictions and observations in each box. The excess of events observed in the MU

box results in the posterior peaking at a small, nonzero value.

A 95% probability model independent upper limit is calculated by finding the

signal yield s∗ which satisfies

∫ s∗

0

P (s)ds = 0.95

∫ ∞

0

P (s)ds , (9.37)

where P (s) is the posterior pdf . These 95% probability intervals are indicated by the

filled areas in figure 9.37. The observed limit in the HAD box is s∗ < 8.4 (expected



236

µs
0 5 10 15

Pr
ob

ab
ili

ty
 d

en
si

ty

0

0.001

0.002

es
5 10 15 20

Pr
ob

ab
ili

ty
 d

en
si

ty

0

0.002

0.004

0.006

0.008

hads
0 5 10 15

Pr
ob

ab
ili

ty
 d

en
si

ty

0

0.0005

0.001

0.0015

0.002

Figure 9.37: Posterior pdf for signal yield in the MU (Left), ELE (Center) and HAD
(Right) boxes, obtained modeling the likelihood of the observed yield n as a Poisson
function P (n|s+ b) and using a flat prior for the signal yield s and log-normal prior
for the background yield b.

limit 7.2 ± 2.7); in the MU box s∗ < 6.3 (expected 3.5 ± 1.1); and in the ELE box

s∗ < 2.9 (expected 3.6 ± 1.1). For 10% of the pseudoexperiments in the MU box

the expected limit is worse than the observed. The stability of the result was studied

against different choices of the prior. In particular, using the reference posterior

derived with the methods described in Ref. [177] the observed limits in the HAD, MU

and ELE boxes are 8.0, 5.3 and 2.9, respectively.

These results can be interpreted in the context of the CMSSM, which is a simplified

subset of the full SUSY parameter space motivated by minimal supergravity scenarios

for spontaneous soft supersymmetry breaking. Model points in the CMSSM are

specified by five soft breaking parameters: three mass parameters m0, m1/2 and A0

which are, respectively, universal scalar and gaugino masses and a universal trilinear

scalar coupling, as well as tanβ, the ratio of the up-type and down-type Higgs vacuum

expectation values, and the sign of the supersymmetric Higgs mass parameter µ. More

details about the CMSSM can be found in Ch. 8. The models realized by scanning over

these parameters are widely varied in their superpartner spectra, production channels

and decay chains and can produce events in many different final states, although

they aren’t exhaustively representative of all SUSY possibilities. This means that

by interpreting these results in this model framework, we can confront a significant

collection of potential signal kinematics and final states. The efficiency for selecting
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the events produced in these hypothetical models can vary from ∼1% to 15%, and

are shown in section B.10 for each of the signal models considered and each final state

selection.

We project the upper limits on s∗ in each final state box on the m0 and m1/2

plane comparing by comparing them with the expected signal event yields and ex-

cluding any model if s(m0,m1/2) > s∗. The systematic uncertainty on the signal yield

(coming from the uncertainty on the luminosity, the selection efficiency, and the the-

oretical uncertainty associated to the cross section calculation) is modeled according

to a log-normal prior. The uncertainty on the selection efficiency includes the effect

of jet energy scale (JES) corrections (section B.12) corrections, parton distribution

function (PDF) uncertainties [178]) (section B.11) and the description of initial-state

radiation (ISR). All of these effects are summed in quadrature to calculate the the

total systematic error on the signal yield and are summarized in Table 10.4.

box MU ELE HAD
Experiment

JES 1% 1% 1%
Data/MC ε 6% 6% 6%
L [179] 4% 4% 4%

Theory
ISR 1% 1% 0.5%
PDF 3%-6% 3%-6% 3%-6%
Total 8%-9% 8%-9% 8%-9%

CMSSM
NLO σ 16%-18% 16%-18% 16%-18%
Total 17%-19% 17%-19% 17%-19%

Table 9.15: Breakdown and total systematic uncertainties on the signal yield. For
the CMSSM scan the NLO cross section uncertainty is included.

The observed limits from the HAD, ELE and MU boxes are shown in figure 9.38

in the CMSSM (m0,m1/2) plane for tanβ = 3 or tanβ = 10, A0 = 0, sgn(µ) = +1,

along with the 68% probability band around the expected limits which is obtained

by applying the same limit setting procedure described above to an ensemble of

background-only pseudoexperiments. The band is calculated around the median of
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the expected limit distribution. Observed limits are also interpreted for CMSSM

models with tanβ = 50, A0 = 0, sgn(µ) = +1, shown in figure 9.39.

We also interpret these NULL search results in the context of simplified mod-

els [180–182]. These are SUSY-inspired signal event topologies with only two sparti-

cles in the new physics spectrum: a strongly interacting squark or gluon which will

be pair-produced in LHC collisions and a weakly interacting LSP, which the strongly

interacting sparticles decay to. Cross section upper limits can be placed on these

models directly as a function of the sparticle masses appearing in the spectra. The

95% C.L. cross sections upper limits as a function of the physical masses for two

benchmark simplified models (four-flavor squark pair production and gluino pair pro-

duction) are shown in figure 9.40. In the former, each squark decays to one quark

and the LSP, resulting in final states with two jets and missing transverse energy.

Similarly, the in the second model gluinos undergo three body decays to two light

quarks and the LSP, yielding events with four jets and missing transverse energy.

The qualitative features of these simplified model results reinforce our under-

standing of the razor variables and the kinematics of these new physics events. The

cross section upper limits in figure 9.40 and the selection efficiencies for these models

(shown in section B.10) do not depend linearly on msquark/gluino or mLSP but rather

on

M∆ =
m2

squark/gluino −m2
LSP

msquark/gluino

, (9.38)

due to the fact that the MR peak position for these events scales with this value.
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Figure 9.38: Observed (solid curve) and expected (dot-dashed curve) 95% CL limits in
the (m0, m1/2) CMSSM plane with tan β = 3 (Left), tan β = 10 (Right) and A0 = 0,
sgn(µ) = +1. Results are shown for the HAD box (Top), the MU box (Center) and
the ELE box (Bottom). The ± one standard deviation equivalent variations in the
uncertainties are shown as a band around the expected limits.



240

 (GeV)0m
200 300 400 500 600

 (G
eV

)
1/

2
m

200

300

400

500

(500)GeV
q~

(500)GeVg~

(650)GeV
q~

(650)GeVg~

(800)GeV
q~

(800)GeVg~

 = 7 TeVsCMS   -1Ldt = 35 pb

 > 0µ = 0, 
0

 = 50, Atan

<0µ=5, tan, q~, g~CDF  

<0µ=3, tan, q~, g~D0   

±

1
LEP2   

 =
 L

SP

95% CL  Limits:
Observed Limit, NLO
Median Expected Limit

 1 ±Expected Limit 

 =
 L

SP

95% CL  Limits:
Observed Limit, NLO
Median Expected Limit

 1 ±Expected Limit 

 (GeV)0m
200 300 400 500 600

 (G
eV

)
1/

2
m

200

300

400

500

(500)GeV
q~

(500)GeVg~

(650)GeV
q~

(650)GeVg~

(800)GeV
q~

(800)GeVg~

 = 7 TeVsCMS   -1Ldt = 35 pb

 > 0µ = 0, 
0

 = 50, Atan

<0µ=5, tan, q~, g~CDF  

<0µ=3, tan, q~, g~D0   

±

1
LEP2   

 =
 L

SP

95% CL  Limits:
Observed Limit, NLO
Median Expected Limit

 1 ±Expected Limit 

 =
 L

SP

95% CL  Limits:
Observed Limit, NLO
Median Expected Limit

 1 ±Expected Limit 

Figure 9.39: Observed (solid curve) and expected (dot-dashed curve) 95% CL limits
in the (m0, m1/2) CMSSM plane with tan β = 50 and A0 = 0, sgn(µ) = +1. Results
are shown for the HAD box (Left) and the ELE box (Right). The ± one standard
deviation equivalent variations in the uncertainties are shown as a band around the
expected limits.
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Figure 9.40: Upper limits on two simplified models: di-squark production (Left)
resulting in a 2-jet + MET final state and di-gluino (Right) production resulting in
a 4-jet + MET final state. The shade scale indicates the value of the cross section
excluded at 95% C.L. for each value of mLSP and mgluino or msquark. The solid and
dashed contours indicate the 95% C.L. limits assuming the NLO cross section and its
variations up and down by a factor of three.



241

9.8 Conclusion

We performed a search for squarks and gluinos using a data sample of 35 pb−1 inte-

grated luminosity from pp collisions at
√
s = 7 TeV, recorded by the CMS detector

at the LHC. The search was based on the razor variable, MR and R, which are used

to distinguish between events containing two or more weakly interacting particles

resulting from the decays of new, heavy sparticles and the SM backgrounds in final

states with jets, missing transverse energy and with and without leptons.

The search relied on predictions of the SM backgrounds determined from data

samples dominated by SM processes. No significant excess over the background ex-

pectations was observed, and model-independent upper limits on the numbers of

signal events were calculated. The results were presented in the (m0, m1/2) CMSSM

parameter space. For simplified models the results were given as limits on the pro-

duction cross sections as a function of the squark, gluino, and LSP masses.

The constraints placed by this analysis on SUSY parameter space demonstrate

the strengths of the razor analysis approach; the simple exponential behavior of the

various SM backgrounds when described in terms of the razor variables is useful in

suppressing these backgrounds and in making reliable estimates from data of the

background residuals in the signal regions. Hence, the razor method provides an

additional powerful probe in searching for physics beyond the SM at the LHC.
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Chapter 10

Searching Through Razor Space

In chapter 9 we described a search for new physics focusing on models with new, heavy

particles and conserved Z2 symmetries, like R-parity and SUSY. Using the kinematic

variables MR and R, event yields in hadronic and single lepton final states were used

to place constraints on new physics parameters and particle masses that were, in

many cases, the most restrictive ever. But there are a number of ways that this

search could be improved. In the following chapter, we describe a new search for new

physics based on adaptations of the original razor variables using the CMS detector

with 5 fb−1 of
√
s = 7 TeV pp collision data. With new variables that avoid ill-defined

event configurations and an increase in kinematic phase-space and the number of

final states the search considers, there is a large increase in sensitivity relative to the

previous search. In chapter 10, we describe the search through the two dimensional

MR/R2 plane in final states with zero, one or two leptons, with and without b-quark

tagged jets. The results of this search are interpreted in R-parity conserving SUSY

scenarios, along with a collection of Z2 symmetry-inspired simplified models, including

cases featuring the production and decays of new-symmetry partners of SM tops, like

stops in SUSY.

10.1 A Better MR

The kinematic variable MR, derived in section 9.1.1, satisfies a number of useful

properties. It is sensitive to the mass scale of new physics events and is invariant under
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boosts along the beam axis, an essential feature at a hadron collider. Unfortunately

it is not always well-defined. For some event configurations the longitudinal boost

which takes particles from the lab frame to the R-frame, βR, is greater than one,

corresponding to an R-frame that is traveling faster than the speed of light. This can

occur when the approximations used to derive MR lead to unphysical cases. In this

section we derive a new variable which shares all of MR’s useful properties, but that

is always well-defined.

To see how this is accomplished, we return to the simple scenario of the produc-

tion of two, identical particles of type S, each decaying to a visible SM particle Q and

a weakly interacting particle χ, such that each decay chain has an identical particle

content. This type of event is illustrated in figure 10.1.

S2

S1

p

p Q1

χ1

Q2

χ2

Figure 10.1: Canonical SUSY production scenario. Two massive particles, Si, are
produced in a pp collision and each decay to a SM particle Qi, and a weakly interacting
particle, χi.

Firstly, we identify the kinematical characteristics that are associated with events

with |βR| ≥ 1. Using the notation of section 9.1.1, we recall that the decay angles

in the Si rest frames were denoted by unit vectors û1 and û2. It is these directions,

relative to the S particles’ axis of motion in the CM frame, ~βCM , that dictate whether

|βR| < 1. Setting γCM = 1.1, we scan over values for the unit vectors û1, û2 and β̂CM in

a toy simulation, noting for which values and with what frequency we find |βR| ≥ 1. In

figure 10.2 we show the correlation between the normalized z-components of momenta

of Q1 and Q2 in the rest frames of their respective parents Si for events where the

R-frame is ill-defined. We find, as perhaps one could infer from the expression of

βR =
|~q l

1 −|~q l
2 |

ql1z−ql2z
, that these longitudinal momentum components tend to be equal in
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both direction and magnitude. In fact, as γCM tends toward one, the distribution

shown in figure 10.2 (left) tends toward a discrete line along the û1 · ẑ = û2 · ẑ diagonal.

Similarly, in figure 10.2 (right) we see the correlation of the difference in azimuthal

angles between the momenta of Q1 and Q2 and the momenta of Q1 and ~βCM . We

find that events with |βR| ≥ 1 tend to have û1 and û2 pointing in the same direction

in the transverse plane, with ~βCM pointing in either the same or opposite direction.
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Figure 10.2: (Left) Correlation between û1 · ẑ and û2 · ẑ for events with γCM = 1.1

and |βR| ≥ 1. (Right) Correlation between ∆φ(û1, û2) and ∆φ(û1, ~βCM) for events
with γCM = 1.1 and |βR| ≥ 1. Distributions are normalized to unit volume.

These observations indicate that the cases where the R-frame is ill-defined result

from the neglecting of the transverse component of ~βCM in the approximations made

in the derivation of MR. We recall that in the R-frame approximation we assumed

that ~βCM → 0, and when the transverse components of ~βCM are large, and point

along the Si decay axes, MR can become imaginary. In order to derive a new variable

that is always well defined we relax this assumption, instead assuming only that

~βCM · ẑ → 0. Now, there are two unknown boosts relating the lab frame and our

rough approximations of the Si rest frames: a longitudinal boost, βL∗ , which moves

from the lab frame to an approximation of the CM frame (R-frame) and a transverse

boost, ~βR
∗

T , which acts in equal and opposite directions on the two particles Qi to take

them from the approximate CM frame to their respective Si rest frames (R∗-frames).

The series of Lorentz boosts taking Q1 and Q2 from the laboratory frame to their
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respective R∗-frames can be summarized as:

ql1
βL∗−−→ qR1

~βR
∗

T−−→ qR
∗

1 ,

ql2
βL∗−−→ qR2

−~βR∗T−−−→ qR
∗

2 . (10.1)

There are three d.o.f. associated with these transformations but only one constraint:

Since the decay chains have identical particle content the momenta of Q1 and Q2

must have the same value in their respective R∗-frames. This can be re-expressed as

a constraint equation on the variables βL∗ and ~βR
∗

T ,

γL∗(|~q l
1 | − |~q l

2 |)− γL∗βL∗(ql1z − ql2z) = ~βR
∗

T · (~q l
1T + ~q l

2T ) , (10.2)

which can be used to solve for the magnitude of ~βR
∗

T , βR
∗

T ≡ |~βR
∗

T |, in terms of β̂R
∗

T

and βL∗ ,

βR
∗

T =
γL∗(|~q l

1 | − |~q l
2 |)− γL∗βL∗(ql1z − ql2z)

β̂R
∗

T · (~q l
1T + ~q l

2T )
. (10.3)

Just as we did in the R-frame, we will define the R∗-frame mass, MR∗ , as two

times the magnitude of the momentum of Q1 in its respective R∗-frame. MR∗ can be

expressed as

MR∗ ≡ 2|~q R∗

1 | = 2|~q R∗

2 |

=
2γL∗ β̂

R∗
T ·

[
(|~q l

1 |~q l
2T + |~q l

2 |~q l
1T )− βL∗(ql1z~q l

2T + ql2z~q
l

1T )
]

√
|β̂R∗T · (~q l

1T + ~q l
2T )|2 − γL∗

[
|~q l

1 | − |~q l
2 | − βL∗(ql1z − ql2z)

]2 . (10.4)

In order to calculate MR∗ , we must specify values of βL∗ and β̂R
∗

T . We have allowed

γR∗ to be nonzero but the considerations that led to the γR∗ → 1 approximation still

hold; instead of setting the under constrained d.o.f. to zero as we did for MR we will

minimize it away. We find that the choice of β̂R
∗

T which minimizes γR∗ is given by

β̂R
∗

T =
~q l

1T + ~q l
2T

|~q l
1T + ~q l

2T |
, (10.5)

illustrated in figure 10.3.
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~q2T

β̂RT~q1T

ẑ

β̂RT ≡ ~q1T+~q2T
|~q1T+~q2T |

Figure 10.3: The particles’ Q1 and Q2 momenta in the plane transverse to the beam
axis. The direction of β̂R

∗
T which minimizes γR∗ points in the direction ~q l

1T + ~q l
2T .

For the remaining d.o.f. corresponding to βL∗ we will take a similar approach, for

slightly different reasons. We would like our final kinematic variable expressions (for

MR∗ and γR∗) to be invariant under boosts along the beam axis. This property will

be guaranteed by choosing the βL∗ which satisfies ∂MR∗
∂βL∗

= 0.

With each unknown quantity now specified, MR∗ can be expressed, event-by-event,

as

MR∗ =

√
(|~q l

1 |+ |~q l
2 |)2 − (ql1z + ql2z)

2 − (|~q l
1T |2 − |~q l

2T |2)2

|~q l
1T + ~q l

2T |2
. (10.6)

γR∗ = (1− |~βR∗T |2)−1/2 is given by

γR∗ =

√√√√ (|~q l
1 |+ |~q l

2 |)2 − (ql1z + ql2z)
2

(|~q l
1 |+ |~q l

2 |)2 − (ql1z + ql2z)
2 − (|~q l

1T |2−|~q l
2T |2)2

|~q l
1T+~q l

2T |2
. (10.7)

As is the case for MR, MR∗ is invariant under longitudinal boosts, as is γR∗ . Analogous

to the R-frame, we define the R∗-frame razor, R∗, as the ratio of MR
T and MR∗ , with

MR
T given by equation (9.13).

To understand how the distribution of MR∗ changes with γCM , we numerically

integrate over all the decay angles assuming isotropic decays. The resulting MR∗ and

γR∗MR∗ distributions are shown in figure 10.4. We find that the peak value of the
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MR∗ distribution is at approximately M∆, regardless of γCM , while γR∗MR∗ peaks at

γCMM∆.
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Figure 10.4: Distribution of MR∗ (Left) and γR∗MR∗ (Right) for different values of
γCM . Distributions are normalized such that their maximum value is equal to one.

Comparing figure 10.4 and figure 9.4, we see that the peak position of the γR∗MR∗

distribution scales like the peak of the MR distribution. MR is a variable most useful

for treating the case γCM = 1 which, in practice, is kinematically forbidden. The

quantity γR∗MR∗ reproduces the same peaking behavior, without ill-defined configu-

rations and better resolution on the quantity γCMM∆.

In fact, the variables MR∗ , γR∗MR∗ and MR share many properties. We consider

two of the examples from section 9.1.4, now in the context of MR∗ and γR∗ . The first

scenario is of two massive particles, S1 and S2, with different masses decaying each

to a visible particle and potentially massive weakly interacting particle, such that

M2
∆ = M1

∆(1 + δ) = M∆(1 + δ). Assuming γCM = 1, and numerically integrating over

the decay angles, we calculate MR∗ as a function of δ, with the resulting distributions

shown in figure 10.5 (left). We observe that MR∗ , like MR, has a peak whose position

scales with
√

1 + δ.

The second example from section 9.1.4 involves two particles S1 and S2, with the

same mass. S1 undergoes a two-body decay to a visible particle, Q3, and another

particle, G1, with mass MG = MS(1 − δ). The particles S2 and G1 then each decay

to a weakly interacting particle and a visible particle, where the mass of the weakly
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Figure 10.5: (Left) Distribution ofMR∗ , in units ofM∆

√
1 + δ, for different values of δ.

(Right) Distribution of γR∗MR∗ when one of the particles Si decays to an intermediate
particle Gi with mass MG = MS(1 − δ), for different values of δ. Distributions are
normalized such that their maximum value is equal to one.

interacting particles is Mχ. The numerically integrated γR∗MR∗ distributions, for

different values of δ, are shown in figure 10.5 (right). We observe that, like MR, the

quantity γR∗MR∗ peaks at M∆ =
M2
S−M2

χ

MS
, regardless of the value of δ.

In general, we see that the quantity γR∗MR∗ behaves almost identically to MR.

This correspondence also hold for SM background processes. This fact is illustrated in

figure 10.6 with early 2011 CMS data, comparing theMR and γR∗MR∗ scaling behavior

in QCD dijet events. We see that γR∗MR∗ exhibits MR/R2 scaling qualitatively

and qualitatively identical to MR. The construction γR∗MR∗ shares all the useful

of properties of MR and is guaranteed to be well-defined. In fact, for realistic γCM

distributions, γR∗MR∗ is a better indicator of the scale M∆ than MR.

Having found suitable replacements for the variables MR and R in γR∗MR∗ and

R∗ we take the notational liberty to retire the original expressions for these variables

and replace them with those of γR∗MR∗ and R∗. Having been superseded by superior

concepts, the original MR and R will not be discussed again; may they rest in peace.

MR ≡ γR∗MR∗ =
√

(|~q l
1 |+ |~q l

1 |)2 − (qlz1 + qlz2)2

R ≡ R∗ =
MR

T

γR∗MR∗
. (10.8)
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Figure 10.6: Data selected with prescaled, low threshold dijet triggers in the all-
hadronic final state from early 2011

√
ŝ = 7 TeV LHC running. (Top) MR(γR∗MR∗)

distribution as a function of R(R∗) cut. (Bottom) Exponential slope of the
MR(γR∗MR∗) as function of R(R∗) cut. The quantitative and qualitative behavior
of the variables MR and γR∗MR∗ are the same.



250

10.2 Phenomenology of the 2D Razor Plane

The razor variables MR and R provide a distinctive description of SM background

and SUSY signal events which allows us to identify a preferred region of kinematic

phase space where we can search for signs of new physics. This kinematic separation

is illustrated in the two dimensional MR/R2 distributions for simulated signal and

background events shown in figure. 10.7.

The variable MR is sensitive to the scale of each of these events and can distinguish

SUSY events containing new sparticles with large masses from background events

containing only lighter SM particles. Backgrounds like QCD multijets, whose events

don’t contain particles with large masses, have a preferred scale set by the convolution

of minimal object momentum requirements in the selection of events (described in

section 10.4.2) and steeply falling parton luminosities. R-parity conserving SUSY

events, like the example of LM6 illustrated in figure 10.7 which features predominantly

gluino pair production, have a peaking MR distribution indicating the mass difference

between the heavy pair-produced parent particles and escaping LSPs. The variable

R is sensitive to the presence of weakly interacting particles, having larger values

for events with at least two weakly interacting particles following from the decay

of different particles, like our intended signal events. In the 2D razor plane, we

expect the SM backgrounds to be restricted largely to the low MR/low R region,

while events with the pair production of heavy particles each decaying to visible and

weakly interacting particles, our desired signal, will populate the high MR/low R

region.

For a given process, the events which populate the region of the razor plane above

the characteristic scale of that process (set by the masses of particles in these events,

or the center of mass energy threshold above which these events have a maximum

production rate) follow hyperbolic constant-yield contours in the variables MR and

R. The reason for this can be understood in the construction of the razor variables.

For a fixed center of mass (CM) energy in a hard collision, the energy of the event

is shared between detected and undetected particles. The variable MR will increase
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Figure 10.7: Scatter plot in the (R2, MR) plane for simulated events: (Top left)
multijets, (Top right) W+jets and Z(νν̄+jets, (Bottom left) tt̄+jets, and (Bottom
right) the SUSY benchmark model LM6 [173] with M∆ = 831 GeV. The yields
are normalized to an integrated luminosity of ∼ 4.7 fb−1, except for the multijet
background where the integrated luminosity of the generated sample is used. The bin
size is (20 GeV × 0.005).

in value if more energy is contained in detected particles, which are included in the

event mega-jets. On the other hand, R reflects the ratio of undetected to detected

momentum in the event; its value will decrease with more detectable energy and

increase with less. The product of MR and R2 is approximately constant for a fixed

CM energy while the total energy can be shared differently between the two variables.

The steeply falling distribution of CM energy, once it has exceeded the threshold value

for a given process, results in the yields of each of these hyperbolic contours falling

steeply towards the upper right hand corner of the razor plane.

Similarly, the interplay between these two variables can be used to suppress back-

ground events with spurious instrumental effects. Backgrounds with enormous rela-
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tive cross sections, like QCD multijet production, can be especially pernicious since

the large event yields give opportunities for rare and dramatic instances of detector

noise and mis-reconstruction. For example, a large under-measurement of a single

jet in a multijet event could make it incorrectly appear as if it has a large miss-

ing momentum component, and the tail of a missing transverse energy distribution

will be populated with similar events. For the razor variables, the same concept of

sharing a fixed CM energy between detected and undetected particles in the event

applies here, accept now instead of weakly interacting particles, energy now escapes

the event due to mis-measurements. An event containing an object whose energy is

measured to be artificially small will be measured to have larger values of R, since

the event will appear to have missing momentum, but will also decrease the measured

value of MR. With respect to over-measurements of objects’ energies, the fact that

the object resolution functions fall more steeply than the parton luminosity distribu-

tions with increasing over-measurement ensures that events at large values of MR and

R are made up predominantly of events with truly large CM energies, rather than

mis-reconstructed examples of large backgrounds, which are resigned to the lower left

corner of the razor plane

At larger values of R and MR in excess of the SM particle masses, background

events are comprised of processes with genuine missing transverse energy resulting

from the decay of W and Z bosons to neutrinos, with CM energies in excess of

the boson masses. In this hyperbolic regime of the razor plane we find that we can

analytically model the shapes of each of the SM backgrounds by exploiting empirically

observed MR/R2 scaling.

10.2.1 2D MR/R
2 Scaling

The one dimensional consequence of the hyperbolic two dimensional correlation be-

tween MR and R2 illustrated in figure 10.7 for the variable MR is that, for increasing

values of R, the MR distribution will fall more steeply. In section 9.2, we observed

that this scaling behavior obeys a simple analytic model, which is demonstrated in a
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sample multijet events selected from 2011
√
s = 7 TeV CMS data shown in figure 10.8

(see section 10.4.2 and C.1 for details about the reconstruction and selection of this

sample).
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Figure 10.8: (Left) MR distribution for different values of the R2
cut for events in data

selected in the HAD box with low threshold, prescaled jet triggers. Each distribution
is fit with an exponential function. (Right) The exponential slope parameter, S, from
a fit to the MR distribution as a function of R2

cut.

These events are selected with low-threshold jet triggers which ensures that, in

the region of the razor plane illustrated in figure 10.8, they are comprised almost

exclusively of multijet events because of relative production rates at low CM energy.

With this single process isolated, we observe that the MR distribution (integrated

above some value of R) is well described by a single exponential function, e−SMR ,

where S is the exponential slope. Furthermore, we observe that the slope S exhibits

a linear dependence on the value of the cut on R2
cut,

S = a+ bR2
cut . (10.9)

This same hyperbolic behavior of backgrounds suggests that R2 should behave

similarly when applying cuts on MR. In figure 10.9 we consider the same sample of

multijet events selected in data, except now look at the R2 distribution for different

values of a cut on MR. We observe that the R2 distribution, like MR, is well described

by an exponential function and that the exponential slope scales linearly with M cut
R ,

S = c+ dM cut
R . (10.10)
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R .

From linear fits to the measured values of MR and R2 slopes with increasing R2
cut

and M cut
R (figure 10.8 and 10.9 right, respectively) we find that the measured values of

the scaling parameters b (from the MR view) and d (from the R2 view) are consistent.

In fact, we note that in order for this event sample to follow the scaling behavior of

equations (10.9) and (10.10) these two parameters must be the same, and the most

general two-dimensional function of these variables that exhibits this scaling behavior

is given by

Fj(MR, R
2) =

[
kj(MR −M0

R,j)(R
2 −R2

0,j)− 1
]
× e−kj(MR−M0

R,j)(R
2−R2

0,j) , (10.11)

where j indicates the background process the function describes, kj = bj = dj from the

one-dimensional exponential views of the variables and M0
R,j and R2

0,j are constants

specific to the process. Integrating this function over either R2 or MR, above a fixed

value, recovers the one-dimensional exponential behavior in the other variable.

As was the case for the one-dimensional MR scaling described in section 9.2, we

observe that each SM background can be described in the razor plane by the function

Fj(MR, R
2), with some backgrounds having distinct kinematic subcomponents that

require two instances of Fj. One such background is W (`ν)+jets, one of the largest

SM backgrounds in the high MR/R region of the razor plane events. These events

can have large values of MR when two or more associated jets are produced with large

energies (and invariant mass), and large R when the these jets are recoiling against
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Figure 10.10: (Top) MR distribution of simulated W (`ν)+jets events as a function
R2

cut, requiring a reconstructed muon and an absence of b-tagged jets. Each distri-
bution is fit independently with two exponential components. (Bottom left) value of
exponential slope S of the first (steeper) component of MR distribution, as a func-
tion R2

cut. (Bottom right) value of exponential slope S of the second component as a
function R2

cut.

the weakly interacting neutrino from the W decay. The MR distribution for simulated

W+jets events in the muon final state is shown In figure 10.10, as a function of R2
cut.

We see that the distributions are well described by two exponential functions, and

that the slope of each component scales linearly with M cut
R , with different parameters.

Similarly, the analogous one-dimensional R2 distributions for the same simulated

W+jets data sample are shown in figure 10.11. We observe that the two exponential-

component model describes the event sample well, and that the two exponential

slopes evolve independently as a function of M cut
R . Comparing the slope parameters

b1MC and b2MC from the one-dimensional MR view with d1MC and d2MC from the

R2 view we observe agreement, implying the two-dimensional distribution follows the

functional form of equation (10.11).

In order to confirm this two dimensional scaling behavior in data for W (µν)+jets

events, we select an event sample comprised almost entirely of this background process

by requiring events have an isolated, well-identified muon (physics object reconstruc-
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Figure 10.11: (Top) R2 distribution of simulated W (`ν)+jets events as a function
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first (steeper) component of MR distribution, as a function R2

cut. (Bottom right) value
of exponential slope S of the second component as a function R2
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tion and identification is described in section 10.4) and an absence on b-tagged jets,

which rejects backgrounds with top quarks. With the selected event sample we per-

form two-exponential-component fits to the MR(R2) distributions as a function of

R2
cut(M

cut
R ), with the results shown in figure 10.12 (10.13). We observe that this data

sample exhibits the two component scaling behavior in each of the one-dimensional

MR and R2 distributions, and that the values of b1data and b2data are in agreement with

d1data and d2data, demonstrating that the sample can be described by two instances of

equation (10.11). Additionally, we find that the values we measure for these parame-

ters from data are in agreement with those extracted from our simulated W (`ν)+jets

sample.
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Figure 10.13: (Top) R2 distribution of data events selected requiring a reconstructed
muon and an absence of b-tagged jets as a function M cut

R . This event sample is com-
posed almost exclusively of W (`ν)+jets events. Each distribution is fit independently
with two exponential components. (Bottom left) Value of exponential slope S of the
first (steeper) component of R2 distribution, as a function M cut

R . (Bottom right) Value
of exponential slope S of the second component as a function M cut

R .

In the majority of final states in which we will search for evidence of SUSY, the

other large background is comprised of tt̄+jets production, particularly in final states

with b-tagged jets. The corresponding one-dimensional MR and R2 distributions for

simulated tt̄ + jets events in final states with at least one b-tagged jet and no leptons
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are are shown in figure 10.14-10.15. We see that this background is also well described

by a two-component model.
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Figure 10.14: (Top) MR distribution of simulated tt̄+jets events as a function R2
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requiring an absence of reconstructed leptons and at least one b-tagged jet. Each
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Value of exponential slope S of the first (steeper) component of MR distribution, as a
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as a function R2

cut.

In the search for SUSY described in section 10.3, each of the dominant back-

ground in various final states, W (`ν)+jets, Z(``, νν)+jets and tt̄+jets, follow this

two dimensional MR/R2 scaling behavior. For a given background type, we find that

the parameters kj, M
0
R,j and R2

0,j are nearly identical between final states. We also

observe that the parameters describing the second, or flatter, instances of Fj are

nearly identical between different backgrounds, corresponding to a large initial-state

radiation limit where we can no longer kinematically resolve the difference between,

for example, semi-leptonic tt̄+jets events and W (`ν)+jets events as the tt̄ and W

systems recoil against hard jets. In this limit, the product of MR and R2 falls like

the partonic luminosity as a function of
√
ŝ, with little sensitivity to the masses of

the particles present in the event. All of the details of how the various backgrounds

are modeled, and the observed relations between modeling parameters, are given in
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Figure 10.15: (Top) R2 distribution of simulated tt̄+jets events as a function M cut
R ,

requiring an absence of reconstructed leptons and at least one b-tagged jet. Each
distribution is fit independently with two exponential components. (Bottom left)
Value of exponential slope S of the first (steeper) component of R2 distribution, as a
function M cut

R . (Bottom right) Value of exponential slope S of the second component
as a function M cut

R .

section 10.5.2

It is important to note that the analytical description of the SM backgrounds in

the razor plane given by equation (10.11) is empirical in nature, and will not hold

to an arbitrary precision. Furthermore, the function Fj only describes backgrounds

in a subset of the razor plane, at values of MR in excess of the SM particles masses

and intervals of R that can be process dependent. Despite these caveats, we find

that this analytic approach provides an accurate description of SM backgrounds well

within the precision we are sensitive to given the size of the dataset and the region of

the razor plane we will search for SUSY; in fact, simulated events indicate that this

background parameterization provides an adequate description for a dataset more

than one hundred times as large as the one considered here.

With this 2D background prediction we can relate the shape of backgrounds in

the low MR/R2 region to the shape at large values, meaning that we can measure the

shape parameters of each background in a signal free region and extrapolate the full
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analytic background prediction, with corresponding uncertainties, to the full razor

plane. This procedure is described in detail in section 10.5.2. A fully continuous,

2D background predictions allows us to extract evidence of new physics not only

through anomalously high event yields, but also through the shape of our selected

data samples.

10.2.2 SUSY in the 2D Razor Plane

With the shape and yield of SM backgrounds in the razor plane understood, the task

of identifying evidence of SUSY events amounts to identifying an excess of events that

is shaped like SUSY. Since we have descriptions of both MR and R, we can exploit

our knowledge of both variables to identify and characterize signal events.

To illustrate the phenomenological properties of MR and R2 for SUSY events, we

consider two example sparticle production and decay topologies: Di-squark produc-

tion, where each squark decays to a quark (which hadronizes and is reconstructed as

a jet) and an LSP, and di-gluino production, where the gluinos each decay to two

quarks and an LSP. These example topologies are shown in figure 10.16. The details

of event simulation for these samples can be found in section C.1.

q̃

q̃

p

p q

χ̃0

q

χ̃0
g̃
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p

p q

q

χ̃0

q

q

χ̃0

Figure 10.16: Example R-parity conserving SUSY production and decay topologies.
(Left) Di-squark production. Each squark, q̃, decays directly to a quark, q. and
a weakly interacting LSP, χ̃0. (Right) Di-gluino production with each gluino, g̃,
decaying to two quarks, q, and an LSP, χ̃0.

For samples of each of these types of events, the MR distribution is sensitive to

the mass difference between the squarks/gluinos and the weakly interacting LSPs,



261

peaking at a characteristic scale

Mpeak
R ∼M∆ =

m2
q̃/g̃ −m2

χ̃0

mq̃/g̃

. (10.12)

This peaking behavior is shown for our two example topologies in figure 10.17. Despite

the fact that the di-gluino topology features three-body decays, and the quark-jets

coming from those decays are not consistently paired in mega-jets with the correct

gluino assignment, the MR distribution still identifies with characteristic scale as if

the decays were two-body to only one visible and invisible particle. This feature

allows us to identify these events using their mass scale, even when decay topologies

deviate form the simplest case illustrated by our d-squark example. It also means

that, kinematically, the MR distribution alone is not able to strongly distinguish

between these two possibilities.
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Figure 10.17: MR distribution of simulated SUSY events as a function of different
sparticle masses. (Left) Di-squark production where each squark decays to a quark
and LSP. (Right) Di-gluino production where each gluino undergoes three-body decay
to two quarks and an LSP.

The variable R can be used to distinguish between the two cases. R is sensitive

to the partitioning of energy in the event between visible and invisible particles.

Relative to the squark case, the di-gluino events have more visible, detectable jets in

the final state and these objects carry more of the momentum on average than do

the LSPs. The result is, on average, smaller values of R for di-gluino events than for
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di-squarks, illustrated in the R2 distributions shown in figure 10.18. In both cases,

two weakly interacting particles in the final state result in larger values of R than the

SM backgrounds, but more so for di-squarks. We also observe in figure 10.18 that the
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Figure 10.18: R2 distribution of simulated SUSY events as a function of different
sparticle masses. (Left) Di-squark production where each squark decays to a quark
and LSP. (Right) Di-gluino production where each gluino undergoes three-body decay
to two quarks and an LSP.

shape of the R2 distribution for our examples is largely independent of the sparticle

masses in these events. This implies an interesting phenomenological picture: The

MR distribution is sensitive to the masses of the particles in the event and largely

insensitive to the decay topology. Conversely, the R2 distribution is largely insensitive

to the sparticle masses while sensitive to the decay topology. Hence, with information

from both variables we can not only distinguish SUSY events from SM backgrounds,

but also between different SUSY scenarios. Combined further with information from

different SM particle content final states, the kinematic information contained in razor

plane shapes can be used to characterize the properties of any potential observed

excess.

The physics of the 2D razor plane can be understood pictorially in from fig-

ure 10.19: At large MR the SM backgrounds (whose iso-yield contours are illustrated

by orange lines) falls quickly towards the upper right, with the number of SM events

getting exponentially smaller. On top of these steeply falling backgrounds we search

for evidence of SUSY production by searching for deviations from this falling, or-
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Figure 10.19: MR vs. R2 distribution of simulated SUSY events as a function of dif-
ferent sparticle masses. Orange contours indicate background iso-yield contours with
number indicating yield relative to contour labelled 1. (Top) Di-squark production
where each squark decays to a quark and LSP. (Bottom) Di-gluino production where
each gluino undergoes three-body decay to two quarks and an LSP.
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derly behavior; blobs of new physics events with shapes set by the properties of those

events, but unlike anything we have seen before.
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10.3 The 5 fb−1 CMS Razor Search for SUSY

As discussed in section 8.2.1, models with softly broken supersymmetry (SUSY) [164–

168] predict additional, undiscovered fundamental particles which correspond to the

heavy superpartners of the SM particles. Experimental searches these for new parti-

cles in the context of R-parity [183] conserving SUSY at the Tevatron [184,185] and

the LHC [186–199] have focused on events signatures with energetic hadronic jets

and leptons from the decays of pair-produced squarks and gluinos, with large miss-

ing transverse energy resulting from the two weakly interacting and stable sparticles

produced in separate decay chains.

Of particular interest is the potential production of the superpartners of the third-

generation quarks, stops and sbottoms. The quadratic divergences in the SM gauge

sector are predominantly due to loop contributions with top quarks and their cancel-

lation, as a result, is dependent on the masses of these superpartners, with a prefer-

ence for light stops to avoid large fine-tuning. These considerations have motivated

searches for the lightest allowed stops and sbottoms, whose decays would produce

final states enriched in heavy flavor [200–204].

S2

S1

p

p Q1

χ1

Q2

χ2

Figure 10.20: General R-parity conserving SUSY LHC event signature. Two massive
sparticles, Si, are produced in a pp collision and each decay to a system of detectable
SM particles, Qi, and a system of weakly interacting particles, χi.

In the remaining sections of this chapter we present an inclusive search for SUSY

based on the razor kinematic variables [169,205]. Motivated by the range of possibil-

ities through which R-parity conserving SUSY could manifest itself at the LHC, we

consider a variety of final states with leptons and b-tagged jets in the region of the
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razor plane where we expect these events could appear.

This analysis follows the reconstruction approach introduced the search described

in Chapter 9, where all the reconstructed final state objects in each event are grouped

into two mega-jets. By casting each event into a two mega-jet final state, we interpret

the event in the context of the canonical R-parity conserving signal topology of two

pair-produced sparticles each decaying to a system of visible SM particles and one

or more stable and weakly interacting LSPs, illustrated in figure 10.20. The razor

variables, MR and R, are derived in section 10.1 and can be calculated from the three

momenta of these mega-jets event by event,

MR ≡ 2
√

(|~p j1|+ |~p j2|)2 − (pj1z + pj2z )2 ,

MR
T ≡

√
| ~M |(|~p j1

T |+|~p
j2
T |)− ~M ·(~p j1

T +~p j2
T )

2
, (10.13)

R ≡ MR
T /MR , ,

where ~p j1 and ~p j2 are the three momenta of the two mega-jets and ~M is the missing

transverse energy. As described in section 9.2, the phenomenological properties of

these variables make them ideal for distinguishing between SM backgrounds and

SUSY events reconstructed with the CMS detector.

The variable MR is sensitive to the scale of events, such that for signal events of

the type shown in figure 9.23 it will resolve the mass splittings between the parent

sparticles Si and the weakly interacting systems of particles, χi. The variable R is

sensitive to the transverse imbalance of events, and requirements on its magnitude will

suppress topologies that have less than two weakly interacting particles in the final

state. This is accomplished without making strong assumptions about the missing

transverse energy spectrum or any details of the intermediate decay chains. If the

difference between the masses of new sparticles and those of the SM are resolvable,

SUSY events will appear at larger values of MR and R than the vast majority of SM

background events. Using the phenomenological MR scaling of these backgrounds, as

described in section 9.2.1, we can make measurements of the background shapes and

yields at low MR and R, and use this information to predict these same backgrounds
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in the high MR and R razor plane where will search for evidence of signal events.

The strategy and execution of the 2011 CMS razor SUSY search, performed on 5

fb−1 of pp collision data at
√
s = 7 TeV, can be summarized as follows:

1. Events are selected by triggers which reconstruct the jets and leptons in the

event at the higher level trigger (HLT) level. From these objects, the razor vari-

ables MR and R are calculated and their values are used to decide whether to

keep the event for study in the analysis, with looser kinematic requirements for

events with electrons or muons. The excellent correspondence between the HLT

and offline reconstruction makes this an efficient way to select events in inter-

esting regions of the razor plane. These triggers are described in section 10.4.1.

2. Jets and leptons are reconstructed and identified in these events, and a b-tagging

algorithm is applied to jets in order to identify those likely to correspond to b-

quarks, as described in section 10.4.2.

3. The reconstructed objects in each event are combined into two mega-jets, which

are used to calculate the variables MR and R. Several baseline kinematic re-

quirements are applied to clean the event samples of mis-reconstructed events

and to ensure that we only consider regions of the razor plane that are efficiently

selected by our triggers. This procedure is described in section 10.4.2

4. Events are assigned to boxes based on the presence or absence of a reconstructed

lepton. This box partitioning scheme allows us to isolate individual background

processes based on final state particle content and kinematic phase space in

order to measure their shape and yield. Events with at least one b-tagged jet

are considered in a parallel analysis focusing on searching for the superpartners

of third generation quarks. In total we consider six different final state boxes:

ELE-ELE, ELE-MU, MU-MU, ELE, MU and HAD. The details of the box

classification scheme are provided in section 10.5.1.

5. In each box independently, we use the low MR/R region of the razor plane to

measure the shape and normalization of the various background contributions to



268

this final state. The analytic background model build from these measurements

is used to extrapolate this background model from the signal-free region of the

razor plane to the full region, where we can compare this independent prediction

with the observed event sample. The details of this background model are

explained in section 10.5.2.

6. Predictions for the shape and yield of SM background events in interesting re-

gions of the razor plane are compared with observations, and used to make

inferences about the presence or absence of SUSY events in these data samples.

Section 10.7 explains how observations in each of the different final states con-

sidered in this analysis are used to constrain the parameter space of a collection

of hypothetical SUSY models.

10.4 Event Selection and Reconstruction

There are two provenances for the event samples used throughout this analysis. The

primary sample is events triggered and reconstructed during 2011
√
s = 7 TeV pp

collision running of the LHC using the CMS detector. A secondary sample is simu-

lated Monte Carlo (MC) event samples, where event generators are used to simulate

the particles produced in proton collisions, propagate these particles through a repre-

sentation of the CMS detector, digitize the hypothetical signals these particles would

leave in the detector and reconstruct the event as if it were recorded in data taking.

This analysis is designed to minimally rely on information gleaned from simulated

event samples. The different event samples used in this analysis are described in

section C.1.

10.4.1 Trigger Selection

Events are recorded by the CMS detector if they satisfy one or more online trigger

requirements. These triggers are based on fast, approximate reconstruction of the

event that mimics later reconstruction requirements that will be applied in identifying
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jets and leptons. For the 2011 CMS razor search data sample there were two distinct

subsets of data, based on the triggers that were running online, that are used in two

different ways in the analysis. After approximately the first 200 pb−1 of data was

recorded in 2011 running, dedicated razor variable triggers, which calculate MR and

R from physics objects reconstructed at the HLT, were deployed to select events in

interesting regions of the razor plane. This later dataset, with online razor triggers

(R11 dataset), is what is used to search for evidence of SUSY in this analysis. The

earlier dataset, without online razor triggers (NR11 dataset), does not necessarily

provide an efficient selection of the razor plane in all final states. On the other hand,

the lower instantaneous luminosity in this earlier running period allowed for generally

lower threshold triggers, both with and without prescales, relative to later periods

and is still useful for building an initial model of our SM backgrounds in the razor

plane.

10.4.1.1 Razor Triggers

The razor triggers are implemented as a complementary suite, covering both different

parts of the razor plane and different final states. For this analysis, we use a collection

of hadronic triggers, which base their decisions on a calculation of MR and R and the

HLT level, and also leptonic triggers, which have lower MR and R thresholds than

their hadronic counterparts, but also require the presence of an electron or muon

reconstructed at the trigger level, with further requirements on its momentum and

quality.

HLT razor variables

The jets that go into the mega-jet calculation of MR and R at the HLT are based

on the trigger-level reconstruction of ECAL and HCAL energy measurements. Af-

ter a full unpacking of the ECAL and HCAL, calorimeter towers are formed which

represent massless particles with the measured energy of the ECAL and HCAL en-

ergies contained and with direction defined by the CMS projective geometry (see

section 5.2 for details about calorimeter energy reconstruction and jet clustering).



270

These calorimeter towers are clustered into jets using an R = 0.5 (cone-size in az-

imuthal angle and pseudorapidity) anti-kT algorithm [57]. The reconstructed energies

of these jets are corrected with on-line-environement-specific Jet-Energy-Scale (JES)

corrections to ensure that these jets, and the variables calculated from them, have

as close a correspondence to their off-line analogues which are used in the analysis.

There must be at least two jets with pT > 56 GeV/c found in the central region of

the detector (|η| < 3) in order for the event to pass. At the Level 1 (L1) trigger, razor

triggers are seeded by L1 DoubleJet36 CentralL1 seed, which requires two jets with

a corrected ET of 36 GeV and |η| < 3.

The jets that have pT > 40 GeV/c and |η| < 3 are further partitioned into two

mega-jets which, along with MET determined from the same calorimeter towers, are

used to calculate the variables MR and R. This procedure is the same as for the

offline analysis, described in section 10.4.3.

Hadronic razor triggers

HLT Path Run Range Int. Lumi.
HLT R020 MR550 165088-183126 4.88 fb−1

HLT R025 MR450 165088-183126 4.88 fb−1

HLT R033 MR350 165088-183126 4.88 fb−1

HLT R038 MR250 165088-183126 4.88 fb−1

Table 10.1: Evolution of the hadronic razor triggers. The luminosity quoted refers to
the recorded value, before applying any data quality monitoring filter.

There are four hadronic razor triggers which base their firing decision solely on the

variables MR and R at the trigger level and are summarized in Table 10.1. Starting

with run 165088, all of these triggers ran without a prescale and collected 4.9 fb−1

of integrated luminosity. Each trigger requires a different combination of minimum

MR and R2 thresholds, indicated in the trigger name (HLT R020 MR550 implies and

R > 0.2 and MR > 550 GeV).
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Leptonic razor triggers

For final states with leptons, requiring a reconstructed lepton at the trigger level

can reduce selection rates, permitting relaxed requirements on MR and R. Events

with electrons and muon are triggered using dedicated lepton razor triggers which

include requirements on the momentum and identification quality of trigger level

leptons, in addition to minimal values of MR and R. These triggers, and the run

periods there were deployed, are summarized in Tab. 10.2.

HLT Path Run Range Int. Lumi.
HLT Mu8 R020 MR200 165088-166967 732 pb−1

HLT Mu8 R025 MR200 165088-173198 2.0 fb−1

HLT Mu10 R025 MR200 173236-180252 3.0 fb−1

HLT Ele10 CaloIdL TrkIdVL CaloIsoVL TrkIsoVL R020 MR200 165088-166967 732 pb−1

HLT Ele10 CaloIdL CaloIsoVL TrkIdVL TrkIsoVL R025 MR200 165088-173198 1.3 fb−1

HLT Ele12 CaloIdL CaloIsoVL TrkIdVL TrkIsoVL R025 MR200 173236-180252 3.0 fb−1

Table 10.2: Evolution of the electron and muon razor triggers. The luminosity quoted
refers to the recorded value, before applying any data quality monitoring.

The muons on which the lepton trigger decision is based follow from the L3 muon

reconstruction, which follows from the addition of tracker information to L2 muon

candidates, where a minimum pT of 3 GeV/c is required. L2 muons are seeded from

L1 through the hltL1SingleMuOpenCandidate module. In addition to the implicit

identification requirement that there is an L3 muon, at least one muon must have a

pT of either 8 or 10 GeV/c, depending on the run range as shown in Table 10.2.

Due to higher rates of candidate electrons relative to muons (larger fake back-

ground), additional quality criteria are applied to the electrons used in the leptonic

razor triggers and indicated in the trigger names. In general, these electron triggers

use the loosest possible identification and isolation requirements. See section 4.3 for

a description of the measured quantities on which these requirements are based.

• CaloIdL: loose calorimetric identification

– H/E < 0.15 (0.1) for barrel (endcap) electrons (measure of hadronic energy

near electron)
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– σiη,iη < 0.014 (0.035) for barrel (endcap) electrons (shower shape require-

ment)

• CaloIsoVL: very loose calorimetric isolation

– relative ECAL isolation < 0.2

• TrkIdVL: very loose track-based electron identification

– ∆η < 0.01 between track and electron supercluster

– ∆φ < 0.15 (0.1) between track and barrel (endcap) electrons

• TrkIsoVL: very loose track based isolation

– ratio of track momenta to electron momenta in cone around electron less

than 10%

Selected electrons must have a pT of at least 10 or 12 GeV/c, depending on the

run range as shown in Table 10.2. Increasing instantaneous luminosity through the

2011 run period resulted in tightening of lepton momentum and razor variable re-

quirements with looser leptonic razor triggers being replaced by increasingly tighter

ones. The combination of the events selected from each of them represents a complete

dataset where events in the interesting region of the razor plane are efficiently selected

in lepton final states.

Razor trigger performance

In addition to the razor triggers listed in Tab. 10.1 and 10.2 there were also

prescaled, low-threshold monitoring triggers implemented in the trigger menu through-

out running. These lower threshold triggers allow us to collect a small, unbiased

sample with which we can evaluate the trigger turn-ons of the razor triggers relative

the the values of the variables we compute offline and use in the analysis.

For the hadronic razor triggers there are loose threshold triggers HLT R014 MR150,

HLT R020 MR150 and HLT R025 MR150. The turn-ons for the muon razor triggers can

be evaluated using HLT IsoMu17 and HLT IsoMu24, which each require an isolated



273

 [GeV]RM

200 400 600 800 1000 1200 1400 1600 1800 2000

 H
A

D
 tr

ig
s

R
E

ff
ic

ie
nc

y 
R

/M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 / ndf 2χ  8.345 / 14

p0        0.01589± 0.9773 

 / ndf 2χ  8.345 / 14

p0        0.01589± 0.9773 

 / ndf 2χ  8.345 / 14

p0        0.01589± 0.9773 

 / ndf 2χ  8.345 / 14

p0        0.01589± 0.9773 Preselection:
 > 0.16 &2R

(HLT_R014_MR150 ||
HLT_R020_MR150 ||
HLT_R025_MR150)

2R

0 0.1 0.2 0.3 0.4 0.5

 H
A

D
 tr

ig
s

R
E

ff
ic

ie
nc

y 
R

/M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 / ndf 2χ  13.67 / 16

p0        0.01438± 0.9708 

 / ndf 2χ  13.67 / 16

p0        0.01438± 0.9708 

 / ndf 2χ  13.67 / 16

p0        0.01438± 0.9708 

 / ndf 2χ  13.67 / 16

p0        0.01438± 0.9708 Preselection:
 > 400 &RM

(HLT_R014_MR150 ||
HLT_R020_MR150 ||
HLT_R025_MR150)

 [GeV]RM

200 400 600 800 1000 1200 1400

 H
A

D
 tr

ig
s

R
E

ff
ic

ie
nc

y 
R

/M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 / ndf 2χ  27.01 / 41

p0        0.003607± 0.9658 

 / ndf 2χ  27.01 / 41

p0        0.003607± 0.9658 

 / ndf 2χ  27.01 / 41

p0        0.003607± 0.9658 

 / ndf 2χ  27.01 / 41

p0        0.003607± 0.9658 Preselection:
 > 0.11 &2R

(HLT_IsoMu17 ||
HLT_IsoMu24)

 [GeV]RM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 H
A

D
 tr

ig
s

R
E

ff
ic

ie
nc

y 
R

/M

0

0.2

0.4

0.6

0.8

1

1.2

1.4
 / ndf 2χ  335.4 / 20

p0        0.002261± 0.9545 

 / ndf 2χ  335.4 / 20

p0        0.002261± 0.9545 

 / ndf 2χ  335.4 / 20

p0        0.002261± 0.9545 

 / ndf 2χ  335.4 / 20

p0        0.002261± 0.9545 Preselection:
 > 300 &RM

(HLT_IsoMu17 ||
HLT_IsoMu24)

 [GeV]RM

200 400 600 800 1000 1200

 x
 E

L
E

 tr
ig

s
R

E
ff

ic
ie

nc
y 

R
/M

0

0.2

0.4

0.6

0.8

1

1.2

 / ndf 2χ  16.92 / 28
p0        0.01241± 0.956 

 / ndf 2χ  16.92 / 28
p0        0.01241± 0.956 

 / ndf 2χ  16.92 / 28
p0        0.01241± 0.956 

 / ndf 2χ  16.92 / 28
p0        0.01241± 0.956 Preselection:

 > 0.11 &2R
HLT_Ele25_IsoT/IdT_DiCentralJet30

2R

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 x
 E

L
E

 tr
ig

s
R

E
ff

ic
ie

nc
y 

R
/M

0

0.2

0.4

0.6

0.8

1

1.2

1.4
 / ndf 2χ  36.34 / 20

p0        0.008079± 0.943 

 / ndf 2χ  36.34 / 20

p0        0.008079± 0.943 

 / ndf 2χ  36.34 / 20

p0        0.008079± 0.943 

 / ndf 2χ  36.34 / 20

p0        0.008079± 0.943 Preselection:
 > 300 &RM

HLT_Ele25_IsoT/IdT_DiCentralJet30

Figure 10.21: Turn-on curve on MR (Left) and R2 (Right) for events firing one of the
prescaled loose monitoring triggers for hadronic (Top), muon (Center) and electron
(bottom) events. The result of the fit of the plateaux to a constant function is shown.

L3 muon with transverse momentum of at least 17 and 24 GeV/c, respectively. The

loose trigger HLT Ele25 CaloIsoT TrkIsoT CaloIdT DiCentralJet30 can be used to

evaluate the electron razor triggers turn-ons.

The trigger turn-on functions for the suite of hadronic and leptonic razor triggers
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are shown in figure 10.21. For each of these turn-on distributions, we fit a constant

function to the plateaux region at high MR and R. These fits indicate at which

threshold the triggers become almost fully efficient and dictate the region of the razor

plane where the analysis is performed. The parameters returned from these fits are

interpreted as systematic uncertainties on the efficiency of these triggers for selecting

signal events, as described in section 10.7.

An analogous set of turn-on curves and fits are created for the subset of events

with at least one b-tagged jet in the event and are shown in figure 10.22. We observe

that the additional b-tagging requirement is not strongly correlated with the small

plateaux inefficiency of the razor triggers.

10.4.1.2 NR11 Control Dataset Triggers

The 200 pb−1 NR11 dataset trigger menu contains an array of prescaled and un-

prescaled triggers which are useful for isolating particular background processes in

the different final states considered in this analysis.

• HLT Ele8 and HLT Ele17 CaloIdL CaloIsoVL: Two prescaled triggers in the

DoubleElectronMu primary dataset (PD) with loose electron requirements and

no constraints on hadronic activity in the event. Selected events result in an

unbiased MR/R distribution for electron final states.

• HLT JetX and HLT DiJetAveX: A collection of prescaled jet triggers requiring

a jet with pT > X GeV/c or two jets with average pT > X GeV/c, respectively.

Low values of X give an unbiased MR distribution to very low values, the

phase-space populated almost exclusively by QCD multijet events.

• HLT IsoMu17: A low pT threshold isolated muon trigger with no requirements

on hadronic activity. The isolation requirement, applied to L3 muons, is looser

than that applied for tight muons online (see section 10.4.2.2).

• HLT Ele17 CaloIdL CaloIsoVL Ele8 CaloIdL CaloIsoVL: Di-electron trigger

with asymmetric electron minimum pT thresholds. The identification, isolation
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Figure 10.22: Turn-on curve on MR (Left) and R2 (Right) for events firing one of the
prescaled loose monitoring triggers for hadronic (Top), muon (Center) and electron
(Bottom) events, with the additional requirement of at least 1 b-tagged jet. The result
of the fit of the plateaux to a constant function is shown.

and momentum requirements are tighter than the offline selection for di-electron

final states and without hadronic activity requirements an unbiased razor plane

selection can be applied.
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• HLT DoubleMu7 and HLT Mu13 Mu8: Di-muon triggers with symmetric and asym-

metric pT requirements for the two muons, respectively. Can be used to select

di-muon final state events without biasing the distribution of razor variables.

• HLT Mu8 Ele17 CaloIdL: Trigger requiring at least one L3 muon and one elec-

tron satisfying loose calorimetric identification with pT > 8 and 17 GeV/c,

respectively.

10.4.2 Physics Object Reconstruction and Identification

10.4.2.1 Primary Vertex Reconstruction

Each selected event is required to have at least one reconstructed Primary Vertex

(PV) which satisfies several conditions. The vertex must be constructed with at least

13 associated degrees of freedom (at least 14 tracks matched to this vertex) and must

be within a distance |∆z| < 25 cm from the beam spot along the beam axis. When

multiple PV are reconstructed in an event the one with highest associated
∑

track pT

is used to project physics object from when calculating their momenta.

10.4.2.2 Muon Identification and Selection

In order to minimize rates of identifying fake muons a series of quality requirements

are enforced. In this analysis, we consider two different sets of criteria associated with

loose and tight muons.

Tight muons must satisfy the following criteria:

• Muon is identified as both TrackerMuon (good candidate based on just inner

tracker information with at least 10 valid hits) and GlobalMuonPromptTtight

(global fit constraining tracker and muon hits with χ2 per degree of freedom

< 10 and transverse impact parameter ≤ 20 µm).

• At least one valid hit in the pixel layers of the tracker.

• Muon transverse momentum pµT > 15 GeV/c.
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• Muon angular acceptance |ηµ| < 2.1 GeV/c .

• Relative combined isolation ISO(µ, 0.3)/pµT < 0.15, where ISO(µ, 0.3) is the

sum of ECAL and HCAL energy deposits in an isolation cone of 0.3 ∆R =
√

∆η2 + ∆φ2 and the sum of the momentum of tracks (excluding the muon) in

the same isolation cone.

For the final combined isolation requirement, the momentum measured in the

isolation cone is corrected for contributions from particles associated with PU inter-

actions by subtracting the quantity π(∆R)2ρ where ∆R = 0.3 is the isolation cone

size and ρ is the average energy per unit of area (in the ∆η-∆φ plane) measured event

by event using the FastJet package [57].

Whenever a muon is selected in the event, we look for a second muon satisfying

the loose requirements:

• Muons are prompt with transverse impact parameter ≤ 10 µm.

• Muon transverse momentum pµT > 10 GeV/c.

• Muon angular acceptance |ηµ| < 2.1 GeV/c.

• At least 10 valid hits in the strips layers of the tracker.

• At least 1 valid hits in the pixel layers of the tracke.

The tight muon requirements are designed to be strictly tighter than the muon

legs of the triggers describe in section 10.4.1. More details about muon reconstruction

can be found in section 3.5.

10.4.2.3 Electron Identification and Selection

Electrons are reconstructed in the CMS detector from clusters of ECAL energy de-

posits (superclusters) matched to tracks from the silicon tracker. The reconstruction

of electrons is described in detail in section 4.3. In order to qualify as a good elec-

tron, candidates must satisfy a number of quality criteria based on the properties of
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their ECAL clusters, their matched track and the inter-consistency of the energy and

momentum measurements of the two, respectively. We define two different quality

criterion for electrons: a tight selection denoted WP80, since it is tuned to be ap-

proximately 80% efficient for isolated electrons and a loose selection denoted WP95.

For an electron to be identified as WP80 is must satisfy the following requirements:

• Baseline transverse-momentum cuts peT > 10 GeV/c.

• Super-cluster inside the fiducial region: |ηSC | < 1.4442 or 1.566 < |ηSC | < 2.5.

• The lateral shower shape, σiηiη < 0.01 (0.031).

• The track-cluster matching in the φ-direction, ∆φin < 0.027 (0.021).

• The track-cluster matching in the η-direction, ∆ηin < 0.005 (0.006).

• ISO(e, 0.3)/peT < 0.15 (0.033) for barrel (endcap) electrons, where ISO(e, 0.3)

is the sum of ECAL and HCAL energy deposits in an isolation cone of 0.3

∆R =
√

∆η2 + ∆φ2 (excluding energies associated with the electrons) and the

sum of the momentum of tracks (excluding the electrons’) in the same isolation

cone.

As for the muon, the momentum measured in the isolation cone is corrected for

contributions from particles associated with PU interactions by subtracting the quan-

tity π(∆R)2ρ with ρ is the average energy density in the event.

Whenever an electron candidate passes this selection the event is queried for a

second electron candidate satisfying the WP95 requirements:

• Baseline transverse-momentum cuts peT > 10 GeV.

• Super-cluster inside the fiducial region: |ηSC | < 1.4442 or 1.566 < |ηSC | < 2.5.

• The lateral shower shape, σiηiη < 0.012 (0.031).

• The track-cluster matching in the φ-direction, ∆φin < 0.08 (0.07).

• The track-cluster matching in the η-direction, ∆ηin < 0.007 (0.011).
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• ISO(e, 0.3)/peT < 0.40 (0.1) for barrel (endcap) electrons.

Both WP80 and WP95 requirements are strictly tighter than the electron trigger

requirements applied for the razor triggers described in section 10.4.1.

10.4.2.4 Jet Identification and Selection and

Missing Transverse Energy Reconstruction

Jets are reconstructed from calorimeter towers, which are each associated with a 5x5

array of ECAL crystals and a HCAL module. Each of these towers is interpreted as

a massless particle, with an energy equal to that measured by the calorimeters in the

tower and momentum set by the projective geometry of the experiment. The towers

are clustered into jets using the infrared and collinear-safe anti-kt jet algorithm [57]

with a cone size of R = 0.5 in azimuthal angle and pseudorapidity-space. More

details about jet reconstruction in CMS events can be found in section 5.2. Each of

the reconstructed jets are corrected for noncompensating calorimetric energy response

using Monte Carlo derived corrections (L2L3) and they are required to have a pT >

40 GeV threshold and be within |η| < 3.0 in order to be considered in the analysis.

Jets passing this criteria are further required to have an electromagnetic fraction

(the ratio of ECAL to HCAL energy deposits contributing to the jet) above 1% in

order to reject HCAL noise.

Due to high the high number of interactions present in many of the events entering

the analysis, we correct reconstructed jets’ energy for contributions from particles not

coming from the event primary vertex. This is accomplished by calculating an effective

area for each jet and the average energy density per unit area, event by event using

the FastJet software package [58, 59], with the input the same calorimeter towers

used to create the jets. The jet area and energy density are multiplied and the sum

removed for each jet.

The missing transverse energy is calculated as the negative transverse vectorial

sum of all of the reconstructed particle flow (PF) candidates in the event. The PF

reconstruction algorithm is described in section 5.2. Effectively, this collection of PF
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candidates accounts for all of the reconstructed energy and momentum in each of the

CMS subdetector systems.

10.4.2.5 Jet b-quark Tagging

The presence of b-quarks in final states can be an indication of events with top decays

or new physics particles which couple to the third generation quarks. In order to select

final states enriched in these events, a parallel event selection and analysis include

the additional requirement of one b-tagged jet in the event (inclusive and b-tagged jet

analyses, respectively).

To satisfy this b-tagged requirement, a jet must satisfy the medium working point

of the Track-Count High-Efficiency (TCHE) tagging algorithm (TCHE discriminant

> 3.3) [30]. The b-tagging discriminant is based on the tracks matched to a secondary

vertex associated with the jet, with the likelihood of the observed configuration match-

ing a b-quark-initiated jet being reflected in the discriminant magnitude. b-tagged jets

must further satisfy pT > 40 GeV and |η| < 3.0.

In order to test whether this b-tagging requirement will bias the shape of the

MR and R2 distributions, we consider the shapes of event yields in samples selected

from data and simulated events with different b-tagging requirements applied. These

distributions, and the ratio of their shapes with respect to no b-tagging requirements,

are shown in figure 10.23 (figure 10.24) for the MR (R2) distribution. The efficiency for

tagging b-quark jets is dependent on the jets’ momenta, particularly for low momenta

jets. Similarly, if these jets represent a large fraction of the energy in an event then

MR can be correlated with those same jets’ momenta, and the MR distribution can

be biased by tagging requirements.

We observe that the shapes of the MR and R distribution are stable to within 10%

for the simulated event samples considered in figure 10.23 and 10.24, for both MR and

R2. The selected data sample exhibits are stronger MR and R2 shape dependence

on the b-tagging requirement, although this is not necessarily indicative of kinematic

bias. This data sample is made up of a combination SM backgrounds, the majority

of events corresponding to tt̄+jets and W (`ν)+jets. Since the former is enriched



281

 < 0.5)2 [GeV] (0.18 < RRM
400 600 800 1000 1200

 / 
40

 G
eV

ev
t

N

1

10

210

310

410
Inclusive

1 TCHEL btag

1 TCHEM btag

1 TCHET btag

=7 TeVs
CMS Preliminary
 

-1 L dt = 4.4 fb∫ 

 < 0.5)2 [GeV] (0.18 < RRM
400 600 800 1000 1200

)
IN

C
L

 / 
N

i bt
ag

R
(N 0

0.2
0.4
0.6
0.8

 < 0.5)2 [GeV] (0.18 < RRM
400 600 800 1000 1200

 / 
40

 G
eV

ev
t

N

1

10

210

310

410
Inclusive

1 TCHEL btag

1 TCHEM btag

1 TCHET btag

=7 TeVs
CMS Simulation 

Multijets

 < 0.5)2 [GeV] (0.18 < RRM
400 600 800 1000 1200

)
IN

C
L

 / 
N

i bt
ag

R
(N

0
0.2
0.4
0.6
0.8

1

 < 0.5)2 [GeV] (0.18 < RRM
400 600 800 1000 1200

 / 
40

 G
eV

ev
t

N

1

10

210

310 Inclusive

1 TCHEL btag

1 TCHEM btag

1 TCHET btag

=7 TeVs
CMS Simulation 

)+jetsνW(l

 < 0.5)2 [GeV] (0.18 < RRM
400 600 800 1000 1200

)
IN

C
L

 / 
N

i bt
ag

R
(N

0
0.2
0.4
0.6
0.8

 < 0.5)2 [GeV] (0.18 < RRM
400 600 800 1000 1200

 / 
40

 G
eV

ev
t

N

1

10

210

310

Inclusive

1 TCHEL btag

1 TCHEM btag

1 TCHET btag

=7 TeVs
CMS Simulation 

+jetstt

 < 0.5)2 [GeV] (0.18 < RRM
400 600 800 1000 1200

)
IN

C
L

 / 
N

i bt
ag

R
(N

0.4

0.6

0.8

1

Figure 10.23: Distribution of MR for different working points of the TCHE b-tagging
algorithm, in the case of Data (Top left), QCD MC (Top right), W+jets MC (Bottom
left), and tt̄ MC (Bottom right). The ratio of these distributions to the inclusive
distribution are shown in the bottom part of each plot.

in b-quarks while the latter is not, a b-tagged jet requirement changes the relative

composition of these two background. Since they have different shapes, the overall

shape of all SM backgrounds changes with the tagging requirement. Comparing,

instead, the MR and R2 shapes of data with one and two b-tagged jet requirements
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Figure 10.24: Distribution of R2 for different working points of the TCHE b-tagging
algorithm, in the case of Data (Top left), QCD MC (Top right), W+jets MC (Bottom
left), and tt̄ MC (Bottom right). The ratio of these distributions to the inclusive
distribution are shown in the bottom part of each plot.

we observe agreement to a few percent, as illustrated in figure 10.25. In this case,

both samples are made up predominantly of tt̄ events and the additional b-tagged jet

requirement is shown to not bias the shape of the kinematic variables for this isolated

background.



283

 < 0.5)2 [GeV] (0.18 < RRM
300 400 500 600 700 800 900 1000 1100

 / 
40

 G
eV

ev
t

N

1

10

210

310

410 1 TCHEM btag

2 TCHEM btag

=7 TeVs
CMS Preliminary
 

-1 L dt = 4.6 fb∫ 

 < 0.5)2 [GeV] (0.18 < RRM
300 400 500 600 700 800 900 1000 1100

 )
2 

bt
ag

 / 
N

2 
bt

ag
R

(N

0.1
0.2
0.3
0.4

 > 400 GeV)
R

 (M2R
0.2 0.25 0.3 0.35 0.4 0.45 0.5

 / 
bi

n
ev

t
N

1

10

210

310

410 1 TCHEM btag

2 TCHEM btag
=7 TeVs

CMS Preliminary
 

-1 L dt = 4.6 fb∫ 

 > 400 GeV)
R

 (M2R
0.2 0.25 0.3 0.35 0.4 0.45 0.5

)
1 

bt
ag

 / 
N

2 
bt

ag
R

(N

0
0.1
0.2
0.3
0.4
0.5

Figure 10.25: . Distribution of MR (left) and R2 (right) for data events with at least
one and two b-tagged jets (TCHEM). The ratio of these distributions is shown in the
bottom part of each plot.

10.4.3 Kinematic Requirements and Mega-Jet Reconstruc-

tion

The calculation of the variables MR and R proceeds from events with two mega-jets,

which are constructed from combinations of all of the visible objects in the event. In

order to contain these mega-jets an event must have at least two reconstructed jets.

If there are more than two then every partition of the jets into two nonempty groups

is considered. A mega-jet is formed from the jets assigned in its partition by summing

their four vectors

pnMJ =
∑

i∈n
pic , (10.14)

where the index n runs over the two mega-jet four vectors pnMJ and the index i in-

dicates the jets’ four vectors pic which are assigned to mega-jet n. Out of all the

possible partitions of the reconstructed jets into two mega-jets the one which min-

imizes the mega-jet masses, (pnMJ)2, summed in quadrature is chosen, an algorithm
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adopted from [173].

Minimizing the mega-jets’ invariant masses implicitly groups together jets travel-

ing in similar directions, maximizing the balance of momentum in the event. It also

maximizes the momenta of each of the mega-jets, yielding larger values of MR and

smaller R than other potential assignment choices. In practice, the chosen algorithm

is found to be quite stable and effective at rejecting background with the kinematic

variables of interest.

The mega-jets are built from a collection of jets which can contain energy from

electrons, which is not explicitly removed from the calorimetric towers clustered into

jets. Conversely, isolated muons will leave only a MIP energy deposit in the calorime-

ters such that their momentum is not accounted for in the collection of jets. This

means that events with electrons can have subtle kinematic differences relative to

those with muons, even if they both come from a W , in the context of the variables

calculated from the mega-jets. This choice was made to maintain consistency with the

reconstruction of the kinematic variables at the trigger level, which is based on calori-

metric objects that are not sensitive to muons’ momenta. While the backgrounds in

muon final states can be artificially less constrained by the kinematic variables with

this choice, this creates a natural control sample to study and constrain the shape of

Z(νν)+jets events in the hadronic final state, using kinematically similar W (µν)+jets

events.

When constructing mega-jets, one can choose whether to include reconstructed

leptons in the final state among the visible objects used to build the mega-jets. Al-

ternatively, the leptons can be treated as invisible and removed from consideration

in the calculation of the kinematic variables (as if they were escaping weakly inter-

acting particles). For backgrounds like W (`ν)+jets, the former choice yields more

transversely balanced mega-jets, and lower values of R, due to the fact that, since

they come from the same decay, harder neutrinos (and hence larger MET) will also

produce leptons. For this background, when leptons are treated as invisible, the MET

corresponds to the entire W transverse momentum, similar to the case of Z(νν)+jets

events.
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The analysis has no other selection requirements, apart from restricting the por-

tion of the razor plane considered to that efficiently selected by the razor triggers.

Minimal MR and R requirements are determined from the trigger turn-on curves

presented in section 10.4.1 for each of the razor trigger combinations:

• MR > 300 GeV and 0.11 < R2 < 0.50 for events selected with leptonic razor

triggers.

• MR > 400 GeV and 0.18 < R2 < 0.50 for events selected with hadronic razor

triggers.

10.5 Box Classification and Background Modeling

Strategy

The expected phenomenology of the sought after SUSY events suggests that the

sparticles that could be produced at the LHC should be massive, maybe in excess of

the SM particles, and that R-parity will guarantee that there are at least two weakly

interacting particles in each event produced; these considerations motivate the region

of the razor plane we examine for evidence of signal. Similarly, the types of SM

particles we expect to see in these new physics events motivates which final states we

consider, although in this case the unknown properties of potential signals compels

us to search in a large collection of final states, including those with and without one

or more leptons or b-tagged jets.

The selected data sample is classified according the the type and number of re-

constructed objects into different boxes. If a potential signal happens to populate one

or a subset of these boxes, then this partitioning enhances our ability to observe it.

Similarly, comparing yields in different boxes provides information about the branch-

ing ratios of observed processes. The SM backgrounds are modeled independently in

each box through fits to the low-MR/low-R2 region, where we expect negligible contri-

butions from expected signals. Derived from the empirical MR/R2 scaling described

in section 10.2, an analytic shape parameterization of MR and R2 is used to model
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the shape and yield of backgrounds in this fit region and extrapolate the complete

background model to the rest of the high-MR/high-R2 plane, where this prediction

can be compared with observed event yields and the presence or absence of SUSY

event contributions can be inferred.

10.5.1 Razor Box Definitions

MU	  Box	  

HAD	  Box	  

MU-‐MU	  Box	  

ELE-‐MU	  Box	  

ELE	  Box	  

(Tight	  MU	  pT	  >	  12	  &&	  WP80	  ELE	  pT	  >	  20)?	  

(Tight/Loose	  MU	  pT	  >	  15/10)?	  

(WP80/WP95	  ELE	  pT	  >	  20/10)?	  

ELE-‐ELE	  Box	  
(Tight	  MU	  pT	  >	  12)?	  

(WP80	  ELE	  pT	  >	  20)?	  
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NO	  

NO	  
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YES	  

YES	  

YES	  

YES	  
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Figure 10.26: Flow diagram of box classification logic. The box selection proceeds
hierarchially in order to ensure complete orthogonality of box selections by resolving
ambiguities when an event satisfies more than one box’s selection criteria.

Six different final state boxes are defined based on the number, type and quality

of reconstructed electrons and muons in an event. These boxes are organized in a

hierarchy, illustrated in Fig. 10.26, such that an event is consequently queried as to

whether it satisfies each box’s requirements until it is assigned to one and only one

box. The box definitions, listed according to assignment hierarchy, are

• MU-ELE Box: Events must contain at least one WP80 electron with pT > 20

GeV/c and at least one tight muon with pT > 10 GeV/c.
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• MU-MU Box: Events must contain at least one tight muon with pT > 15 GeV/c

and one additional loose muon with pT > 10 GeV/c.

• ELE-ELE Box: Events must contain at least one WP95 electrons. with pT > 20

GeV/c and one WP80 electron with pT > 10 GeV/c.

• MU Box: Events must contain at least one tight muon with pT > 15 GeV/c.

• ELE Box: Events must contain at least one WP80 electron with pT > 20 GeV/c.

• HAD Box: Events must not satisfy any other box requirements.

Events contributing to these different boxes are originally selected in data using

different triggers, depending on the box. The events assigned to the ELE, ELE-MU

and ELE-ELE boxes are selected using the electron razor triggers; the MU and MU-

MU box events are selected with the muon razor triggers; the HAD box is populated

from the hadronic razor triggers.

The study of the razor trigger turn-on curves, described in section 10.4.1, indicates

the trigger-dependent region of the razor plane where events are efficiently selected.

Only these regions of the razor plane are considered in the analysis, and events not

satisfying box-dependent minimal MR and R2 requirements are not considered in the

analysis:

• MR > 300 GeV and 0.11 < R2 < 0.50 for the leptonic boxes.

• MR > 400 GeV and 0.18 < R2 < 0.50 for the HAD box.

10.5.2 Building the Background Model

The strategy for modeling the SM backgrounds over the high-MR/high-R2 region of

the razor plane where signal events could appear begins in the low-MR/low-R2 region

of the razor plane, above the minimal MR and R2 requirements set by trigger turn-

ons described in section 10.5.1. Here, the yields of SM backgrounds are high, falling

steeply with increasing MR and R2. The expected contribution of potential SUSY

events is also small, particularly relative to SM backgrounds.
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The MR/R2 scaling described in section 10.2 indicates that we can relate the shape

and yields of backgrounds in this low-MR/low-R2 region to our expected backgrounds

in the potentially signal populated part of the razor plane. Each SM background can

be described by instances of the function Fj(MR, R
2),

Fj(MR, R
2) =

[
kj(MR −M0

R,j)(R
2 −R2

0,j)− 1
]
× e−kj(MR−M0

R,j)(R
2−R2

0,j) , (10.15)

where kj, M
0
R,j and R2

0,j are parameters specific to the component j of the background.

By measuring the parameters that describe the SM backgrounds’ shapes, and their

normalizations, in the low-MR/low-R2 region a background model can be extrapolated

to the full razor plane using these parameters and equation (10.15).

Each razor box is split into a fit region, located in the lower left corner of the razor

plane, and a signal sensitive region, covering the remainder of the plane above the box

minimum MR and R requirements. The razor plane partitioning scheme for each box

is illustrated in Fig. 10.27. The signal sensitive region is further split into six signal

regions, uniform across the boxes except for the tighter minimum R2 requirement in

the definition of the HAD box. A comparison of the predicted and observed event

yields in these signal regions is used to establish a signal-model-independent metric

for assessing agreement between predictions and expectations. These signal regions

are not used for model-dependent interpretations of the results.

The shape and normalization of the SM background for a given box can be de-

scribed as a likelihood which incorporates the functions Fj which describe each com-

ponent of the background. For the portion of the 2011 where razor triggers were

deployed (R11 dataset) the likelihood describing the data can be written as [206]

LR11 =
e−(

∑NSM
i∈SM Ni)

Nevent!

Nevent∏

j=1

[
NSM∑

i∈SM
NiFi(M

j
R, R

2
j |~αi)

]
, (10.16)

where i indicates the background component among the NSM modeled, the sum j

is over all events observed in the box, Ni is the event yield of the ith background

component and ~αi = [ki,M
0
R,i, R

2
0,i] are the parameters describing the shape of the
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Figure 10.27: Definition of razor plane regions for double lepton (ELE-ELE, MU-MU,
ELE-MU) (top), single lepton (ELE, MU) (middle), and HAD (bottom) boxes. The
fit region for each box is indicated by a solid green contour while the signal sensitive
regions, Si, are red and orange and labelled i = 1, ..., 6.



290

ith background. Independently in each box, a maximal likelihood fit is performed

in the fit region on the R11 dataset to determine the parameters ~α which describe

each background. The extended term at the front of the likelihood indicates that

the total sum of background events
∑

iNi does not need to add exactly to Nevent,

the total number of events in the sample, since these normalizations correspond to

the true amplitude of each signal around which Poisson fluctuations can occur. With

shape parameters and normalizations determined, the background model can then be

extrapolated to the full signal sensitive region.

A challenge for this strategy is the large number of parameters contained in the

likelihood LR11. Each pair M0
R,i, R

2
0,i describe translations of a given background

component in the razor plane while the parameter ki indicates the slope of the falling

SM backgrounds moving towards the upper right hand corner. The determination

of these parameters is often strongly correlated for individual backgrounds, and even

between different backgrounds, particularly if they have similar shapes. In order

to guide each ML fit to physically meaningful regions of parameter space, normally

distributed penalty terms are added to the box likelihoods [207].

A penalty term for parameter αik can be written G(αik|αNR11
ik , σ(αNR11

ik ), where G

is a Gaussian (truncated at 0) with mean αNR11
ik and standard deviation σ(αNR11

ik ).

With these terms added, the total likelihood used in each box’s fit region ML fit can

be expressed as

LTOT = LR11 ×
∏

ik

G(αik|αNR11
ik , σ(αNR11

ik ) , (10.17)

where the sum over ik includes each parameter for which a penalty term is included.

The superscript NR11 hints at the provenance of the parameters associated with

these penalty terms; they are derived from measurements from the NR11 dataset, the

first 200 pb−1 of 2011 collision data taken when the razor triggers were not deployed.

With low instantaneous luminosity, this early run period included low threshold lep-

ton triggers with requirements looser than the lepton identification requirements of

the razor box definitions, and without additional requirements on hadronic activity.
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This removes the minimal MR and R2 requirements for considering the region of the

razor plane that can be selected efficiently. In this more inclusive low-MR/low-R2

region control samples were defined in order to isolate events corresponding to the

nonnegligible background contributions over all the boxes: W (eν)+jets, Z(``)+jets

and tt̄+jets.

Requirements on the presence or absence of b-tagged jet are applied in order to

isolate samples of tt̄+jets and W/Z+jets, respectively, in each of the boxes. Using

control samples composed almost exclusively of one background process, the shape

parameters of each background component, ~αi, is measured. Each of these shapes

is then combined to form the full background description for each box, which is

determined from the fit region ML fit to the R11 dataset in each box, with penalty

terms derived from the NR11 control measurements multiplying the likelihood. The

measurements performed on the NR11 data sample are described in section C.2.
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10.6 The Razor Background Model

A full SM background model is built in each box from a ML fit performed in the low-

MR/low-R2 fit regions illustrated in figure 10.27. There, the parameters describing

the shape and yield of each SM background are measured, resulting in a background

prediction that can be extrapolated to the full razor plane.

The SM backgrounds in each box are described by separate instances of the 2D

razor function F (MR, R
2), corresponding to each background component present in

the box. The fit measures the shape parameters ~αi = [ki,M
0
R,i, R

2
0,i] associated with

each background function Fi by finding the values which best fit the observed event

yields in the fit region, maximizing the likelihood

LSM =
e−(

∑NSM
i∈SM Ni)

Nevent!

Nevent∏

j=1

[
NSM∑

i∈SM
NiFi(M

j
R, R

2
j |~αi)

]
×
∏

ik

G(αik|αNR11
ik , σ(αNR11

ik ) ,

(10.18)

where i indicates the background component among the NSM modeled, the sum j

is over all events observed in the box and Ni is the number of events corresponding

to the ith background component. The functions G describe normally distributed

penalty terms for the parameters αik which reflect previous measurements performed

in the independent NR11 dataset, as described in section 10.5.2.

For each box, the parameters describing the SM backgrounds are measured in an

extended and unbinned ML fit using the likelihood of equation (10.18), performed in

the fit region of that box. The measured parameter values, along with the covariance

matrix of their errors, are then extrapolated to the whole razor plane, giving a full

description of the SM backgrounds.

The choice of parameterization (number and type of background component func-

tions Fi) follows from studies of the NR11 dataset and fits to earlier subsets of the

R11 signal datasets. We observe that each of the SM backgrounds populating the

final state boxes is well described by two components, and the shape of the second,

flatter, component, is similar not only between final states but also between differ-

ent background processes. The result is that fits with multiple second components
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from different background processes are unable to distinguish between the multiple

contributions. The shape parameters converge to indistinguishably similar values for

the different second components and their yields are fully anti-correlated between the

different instances. This motivates combining these components into one universal

effective component (UEC) in the fits, representing the sum of all backgrounds’ second

components.

The UEC in each of the final states is observed to be nearly identical, and is un-

derstood to correspond to a hard initial-state-radiation limit where strong emissions,

reconstructed as jets, recoil against the CM system of the hard interaction at such

velocity that the differences between different background processes with weakly in-

teracting particles are negligible at the precision relevant to the background model.

As a result, the razor variable distributions for these events are nearly identical for

the UEC portion of V+jets and top backgrounds, and adopt a shape characteristic

on the partonic luminosities as a function of CM energy,
√
ŝ. The similarities of

the UEC shapes between different boxes is not explicitly enforced in the background

model fits. It is exploited through the penalty terms appearing in the likelihood of

equation (10.18), with the NR11 values and errors for some parameters. Some of

these values are replaced with those from the R11 background fits to higher event

yield boxes, benefitting from increased precision as a result of a larger fit sample.

In each of the boxes there is no explicit component included to model QCD multi-

jet backgrounds. The possibility for these events contributing to yields in the razor

boxes is evaluated in section C.3, where it is demonstrated that the yields of these

events is negligible and can be safely absorbed into other background components.

It is important to note that the veracity of this strategy for building an analytic

description of the SM backgrounds in the razor plane is not self-evident from the

results of these predictions. Deviations between background predictions and observed

yields are interpreted in the context of BSM physics event contributions, not as a

confirmation or rejection of the background model. Rather, the accuracy of the

background model and its corresponding errors is demonstrated through a series of

self-contained studies which evaluate each step of the procedure for possible biases or
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systematic uncertainties.

The razor phenomenology which motivates the analytic functional description of

backgrounds, described in section 10.2, follows from measurements to a large collec-

tion of simulated event samples, with a complete list provided in section C.1. Each

of these samples indicates that the two-dimensional background model used in this

analysis should provide an excellent description of these background. This is con-

firmed in measurements to data control samples in both the NR11 and R11 datasets.

While this model will not hold to arbitrary precision (particularly in the consolidation

of multiple backgrounds into single components), simulated data samples with more

than 2000 times the integrated luminosity of those considered here indicate that it is

accurate well within the required tolerance, as explained in section C.4.

Potential biases in the shapes of the razor variables following from lepton and

b-tagging identification requirements are found to be negligible, as explained in sec-

tion C.5, as are similar effects from PU interactions (section C.6) and trigger inef-

ficiencies or choices for the fit region boundaries (section C.7). Possible deviations

from exponential scaling behavior are discussed in section C.8 and the systematic

uncertainty associated to the choice of functional form is found to be small.

Finally, the full background model procedure is performed on a cocktail of sim-

ulated background events with the expected composition and integrated luminosity

of that selected in data. This exercise is described in section C.9 and constitutes a

closure test of the procedure by successfully predicting the correct background shape

and yield in the signal sensitive region using the subset of events in the fit region.

10.6.1 Background Model of Inclusive Samples

In the following sections, the composition and results of each fit region ML back-

ground fit are described for each of the inclusive dataset boxes. A more expansive

discussion, with additional figures, are included for the MU box. A complete collec-

tion of auxiliary plots detailing these fits is included in section C.10 while the list of

fit parameters determined to describe each of the boxes is tabulated in section C.11.
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10.6.1.1 Inclusive MU Box

The background model in the MU box has contributions from three distinct compo-

nents (instances of Fi(MR, R
2)). Two separate first components model the two largest

processes in this final state, W (µν)+jets and tt̄+jets, while one UEC models the sum

of all backgrounds’ second components.

Penalty terms derived from the NR11 dataset are added to the likelihood for each

of the shape parameters corresponding to each of the background components, with

the exception of the UEC exponential slope parameter k. For this parameter, we

instead float its value in the ML fit freely. The parameters corresponding to the

normalization of each background component are also floated without constraints.
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Figure 10.28: 1D projections of 2D ML fit in the inclusive MU box for MR (Left) and
R2 (Right) in the fit region. The total background prediction is indicated in blue.
The yellow contour corresponds to the UEC component combined with the first tt̄
component. The V+jets first component contribution is indicated in red. Uncer-
tainty bands on each contribution only include statistical fluctuations, not systematic
uncertainties on the function parameters.

The 1D MR and R2 projections of the 2D in the MU box fit region are shown

In figure 10.28. Subtle discontinuities in the data sample and background prediction

reflect the saw-like shape of the fit region. We observe that the background model is

able to describe the event yields in the fit region. As a metric to identify potential

biases in the fit region description of the background model we consider two dimen-

sional binned histograms calculated to give the difference, bin-by-bin, between the

integral of the background model and the observed yield, shown for the MU box in
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figure 10.29. Large areas with predicted/observed differences all in the same direc-

tion can indicate a systematic bias of the shape in the fit region. For the samples

considered in this analysis we observe no such bias.
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Figure 10.29: Bin-by-bin difference between the number of observed data events and
the integral of the background model in the inclusive MU box for the fit region (Left)
and the full razor plane (Right). Difference is in absolute number of events.

The full background model is extrapolated from the fit region to the full razor

plane. This extrapolation includes not only the central values of the shape parameters

and normalizations (adjusted to correspond to the full signal sensitive region) but also

the covariance matrix from the ML fit which includes the errors for each parameter

and the correlations between them. The one-dimensional MR and R2 projections of

the full MU box background model are shown in figure 10.30.

In order to quantify the agreement between the data and the background pre-

diction in the MU box, we use the background model to generate a set of toy pseu-

dodatasets, corresponding to hypothetical outcomes of our experiment, with the fre-

quency predicted by the background model. The covariance matrix is interpreted

as a multinormal distribution corresponding to the pdf of all the background model

parameters. For each toy experiment, a new set of parameters is chosen from this pdf.

From this new background model, a random pseudodataset of background events is

generated. This ensemble of pseudodatasets are used to calculate the expected yield

distribution for each of the signal regions in the MU box, incorporating errors on the

background model through this marginalization procedure.



297

 [GeV]RM
400 600 800 1000 1200 1400 1600 1800 2000 2200

E
ve

nt
s/

(4
0 

G
eV

) 
  

1

10

210

310
Data
SM Total
V+jets 1st

+jets 1st + effective 2ndtt

 = 7 TeVsCMS 
 -1 Ldt = 4.7 fb∫MU box 

   2R
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s/

(0
.0

16
) 

   
  

210

310 Data
SM Total
V+jets 1st

+jets 1st + effective 2ndtt

 = 7 TeVsCMS 
 -1 Ldt = 4.7 fb∫MU box 

Figure 10.30: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for the
inclusive MU box. The blue histogram is the total Standard Model prediction from
the shape parameter central values from the 2D fit. The green contour represents the
combined UEC and tt̄+jets first component. TheV+jets first component contribution
is shown red. The fit is performed the R2-MR fit region and extrapolated into the
full razor plane. The error band on the contours includes only contributions from
statistical fluctuations.
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These distributions of expected yields for each of the signal regions is used to

quantify the probability of observing an outcome less probable than that which was

observed in the actual data, or a p-value. For each signal region, a two-sided p-value

is calculated as

p− value =
∑

p(n)≤p(data)

p(n) , (10.19)

where the sum over probability includes only the yield outcomes less likely than the

one observed. The p-values calculated for the observed yields in each of the MU box

signal regions is shown in figure 10.31.
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Figure 10.31: The p-values indicating the statistical consistency of the number of
observed events in each of the inclusive MU box signal regions (SRi) with predictions
from the background model. The fit region is shown in green while z-axis color scale
indicates p-value. The median and the mode of the yield distribution for each SR is
quoted, together with the observed yield. A 68% probability interval for the expected
yield is calculated, using the probability associated with each yield outcome as the
ordering principle.

The p-values in these signal regions reflect a model independent interpretation of

these results in that they only indicate the probability of this observed outcome in

the context of the background model, without interpreting any deviations as other
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than statistical fluctuations. The implications of these results for the parameters of

hypothetical SUSY models are discussed in section 10.7.

10.6.1.2 Inclusive ELE Box

The SM background model in the inclusive ELE box, like the MU box, includes

three contributions: a V+jets first component (predominantly W (eν)+jets), a tt̄+jets

first component and a UEC reflecting the combination of each background’s second

component. Penalty terms are included in the fit likelihood for each of the background

shape parameters except for the slope parameter k of the UEC, which is floated

without constraint.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.32. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE box signal regions are shown in

figure 10.33.

The UEC slope parameter k is floated in the MU and ELE boxes since they

are well-suited for better constraining its value than the NR11 dataset, with large

statistics samples and a larger fit region than the HAD box. The values of the UEC

component fit parameters for the MU and ELE boxes are compared in Tab. 10.3.

UEC Parameter MU box Fit ELE box Fit
k [GeV−1] 0.0189± 0.0020 0.0138± 0.0030
M0

R [GeV] 43± 29 40± 28
R2

0 −0.275± 0.028 −0.274± 0.027

Table 10.3: Comparison of the shape parameters for the second component from the
ELE and the MU fit.

While the parameters show reasonable agreement, a difference between the two

slope parameters k values is observed at the level of one standard deviation. This

difference could result from a statistical fluctuation but, to be conservative, it is

interpreted as a residual consequence of the different treatment of electrons and muons

in the razor mega-jets construction. The MU-like and ELE-like UEC shapes, as
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Figure 10.32: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for
the inclusive ELE box. The blue contour indicates total SM background predictions
from fit model. The green contour represents the combined UEC and tt̄+jets first
component. The V+jets first component contribution is shown red. The error band
on the contours includes only contributions from statistical fluctuations.
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Figure 10.33: The p-values for the SRs of the inclusive ELE box. z-axis color scale
indicates p-value. The median, mode and 68% probability interval of the yield distri-
bution for each SR is quoted, together with the observed yield.
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determined from these fits, are used in the penalty terms multiplying the likelihood

for the other boxes.

10.6.1.3 Inclusive MU-MU Box

The SM background model in the inclusive MU-MU box includes three contributions:

a V+jets first component (predominantly Z(µµ)+jets), a tt̄+jets first component and

a UEC reflecting the combination of each background’s second component. Penalty

terms are included in the fit likelihood for each of the background shape parameters,

with the UEC component penalty parameters are taken from the MU box fit.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.34. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE box signal regions are shown in

figure 10.35.

10.6.1.4 Inclusive MU-ELE Box

The SM background model in the inclusive ELE-MU box includes two contributions:

an effective first component and a UEC. Here, the background is composed almost

exclusively of tt̄+jets events, such that only two components are required. Penalty

terms are included in the fit likelihood for each of the background shape parameters,

with the UEC component penalty parameters taken from the MU box fit.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.36. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE box signal regions are shown in

figure 10.37.

10.6.1.5 Inclusive ELE-ELE Box

The SM background model in the inclusive ELE-ELE box includes three contribu-

tions: a V+jets first component (predominantly Z(ee)+jets), a tt̄+jets first compo-

nent and a UEC reflecting the combination of each background’s second component.
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Figure 10.34: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for the
MU-MU box. The blue contour indicates total SM background predictions from fit
model. The error band on the contours includes only contributions from statistical
fluctuations.
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Figure 10.35: The p-values for the SRs of the MU-MU box. z-axis color scale indicates
p-value. The median, mode and 68% probability interval of the yield distribution for
each SR is quoted, together with the observed yield.
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Figure 10.36: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for the
ELE-MU box. The blue contour indicates total SM background predictions from fit
model. The error band on the contours includes only contributions from statistical
fluctuations.
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Figure 10.37: The p-values for the SRs of the ELE-MU box. z-axis color scale indicates
p-value. The median, mode and 68% probability interval of the yield distribution for
each SR is quoted, together with the observed yield.
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Penalty terms are included in the fit likelihood for each of the background shape

parameters, with the UEC component penalty parameters taken from the ELE box

fit.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.38. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE box signal regions are shown in

figure 10.39.

10.6.1.6 Inclusive HAD Box

The background model for the inclusive HAD box is unique relative to the other boxes

due to the larger variety of backgrounds appearing. Z(νν)+jets events constitute

a relatively large contribution, with kinematics similar to the W (µν)+jets events

which also appear when the muon is not identified as such. There are backgrounds

with unidentified electrons and hadronic taus resulting from leptonic W decays, with

kinematics like the backgrounds of the ELE box. Of course, there are also analogous

backgrounds with top quarks, with similar W decays.

These many background contributions are consolidated into several components

which are used to model the HAD box background shape, combining kinematically

compatible backgrounds. These components include

• An effective first component, whose shape parameters are floated without con-

straint in the fit, which combines the residual first components of each of the SM

backgrounds. This single component provides an adequate description of sev-

eral contributions which cannot be individually resolved in the more restrictive

fit region of the HAD box, resulting from tighter razor trigger requirements.

• A MU-like UEC, with shape parameters constrained with penalty terms in the

likelihood with values from the fit to the MU box.

• An ELE-like UEC, with shape parameters constrained with penalty terms in

the likelihood with values from the fit to the ELE box.
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Figure 10.38: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for the
ELE-ELE box. The blue contour indicates total SM background predictions from fit
model. The error band on the contours includes only contributions from statistical
fluctuations.
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Figure 10.39: The p-values for the SRs of the ELE-ELE box. z-axis color scale indi-
cates p-value. The median, mode and 68% probability interval of the yield distribution
for each SR is quoted, together with the observed yield.
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All the components’ normalizations are floated in the fit without external constraints.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.40. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE box signal regions are shown in

figure 10.41.

10.6.2 Background Model of b-tagged Samples

In the following sections, the composition and results of each fit region ML background

fit are described for each of the b-tagged dataset boxes. A complete collection of

auxiliary plots detailing these fits is included in section C.10.

10.6.2.1 b-tagged MU Box

As for the inclusive dataset analysis, the MU box fit is performed first in order to

derive new, more precise constraints for the UEC penalty terms for the other boxes

(relative to the NR11 measurements).

The background model in the MU box has contributions from three distinct in-

stances of Fi(MR, R
2). Two separate first components model the two largest processes

in this final state, W (µν)+jets and tt̄+jets, while one UEC models the sum of all

backgrounds’ second components.

Penalty terms derived from the NR11 dataset are added to the likelihood for each

of the shape parameters corresponding to each of the background components, with

the exception of the UEC exponential slope parameter k. For this parameter, we

instead float its value in the ML fit freely. The parameters corresponding to the

normalization of each background component are also floated without constraints.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.42. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE box signal regions are shown in

figure 10.45.

An excess of events is observed in the S6 region, corresponding to about two
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Figure 10.40: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for the
inclusive HAD box. The blue contour indicates total SM background predictions from
fit model. The green contour represents the combined ELE and MU-like UECs. The
effective first component contribution is shown red. The error band on the contours
includes only contributions from statistical fluctuations.
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Figure 10.41: The p-values for the SRs of the inclusive HAD box. z-axis color scale
indicates p-value. The median, mode and 68% probability interval of the yield distri-
bution for each SR is quoted, together with the observed yield.
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Figure 10.42: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for
the b-tagged MU box. The blue contour indicates total SM background predictions
from fit model. The yellow contour represents the combined UEC and tt̄+jets first
component. The V+jets first component contribution is shown red. The error band
on the contours includes only contributions from statistical fluctuations.
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Figure 10.43: The p-values for the SRs of the b-tagged MU box. z-axis color scale
indicates p-value. The median, mode and 68% probability interval of the yield distri-
bution for each SR is quoted, together with the observed yield.
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standard deviations relative to the background mode. This is the smallest p-value

observed in the leptonic boxes and does not coincide with similar observations in the

S6 region of any other box, indicating that it is consistent with a statistical fluctuation.

10.6.2.2 b-tagged ELE Box

The SM background model in the b-tagged ELE box, like the MU box, in includes

three contributions: a V+jets first component (predominantly W (eν)+jets), a tt̄+jets

first component and a UEC reflecting the combination of each background’s second

component. Penalty terms are included in the fit likelihood for each of the background

shape parameters, with penalty parameters for the UEC coming from the MU box fit

values.

The1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.44. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE box signal regions are shown in

figure 10.45.

10.6.2.3 b-tagged MU-ELE Box

The SM background model in the b-tagged MU-ELE box includes two contributions:

an effective first component and UEC second component. The majority of background

events are tt̄, allowing us to model the total background as we would an isolated top

sample. Penalty terms are included in the fit likelihood for each of the background

shape parameters, with penalty parameters for the UEC coming from the MU box fit

values.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.46. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE box signal regions are shown in

figure 10.47.
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Figure 10.44: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for
the b-tagged ELE box. The blue contour indicates total SM background predictions
from fit model. The yellow contour represents the combined UEC and tt̄+jets first
component. The V+jets first component contribution is shown red. The error band
on the contours includes only contributions from statistical fluctuations.
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Figure 10.45: The p-values for the SRs of the b-tagged ELE box. z-axis color scale
indicates p-value. The median, mode and 68% probability interval of the yield distri-
bution for each SR is quoted, together with the observed yield.
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Figure 10.46: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for the
b-tagged MU-ELE box. The blue contour indicates total SM background predictions
from fit model. The error band on the contours includes only contributions from
statistical fluctuations.
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Figure 10.47: The p-values for the SRs of the b-tagged MU-ELE box. z-axis color
scale indicates p-value. The median, mode and 68% probability interval of the yield
distribution for each SR is quoted, together with the observed yield.
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10.6.2.4 b-tagged MU-MU Box

The SM background model in the b-tagged MU-MU box is simplified relative to the

inclusive analysis since the background from Z(µµ)+jets events is effectively removed

with the b-tagged jet requirement. As a result, the background model includes two

contributions: an effective first component and UEC second component. The majority

of background events are tt̄, allowing us to model the total background as we would

an isolated top sample. Penalty terms are included in the fit likelihood for each of

the background shape parameters, with penalty parameters for the UEC coming from

the MU box fit values.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.48. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE box signal regions are shown in

figure 10.49.

10.6.2.5 b-tagged ELE-ELE Box

The SM background model in the b-tagged ELE-ELE box, like the MU-MU, has a

simplified configuration due to the abundance of a single background: an effective

first component and UEC second component. Penalty terms are included in the fit

likelihood for each of the background shape parameters, with penalty parameters for

the UEC coming from the MU box fit values.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown in

figure 10.50. The p-values quantifying the agreement between the background model

prediction and observed event yields in the ELE-ELE box signal regions are shown

in figure 10.51.

10.6.2.6 b-tagged HAD Box

The SM background model in the b-tagged HAD box includes three contributions: a

V+jets first component, a tt̄+jets first component and a UEC reflecting the combi-

nation of each background’s second component. Penalty terms are included in the fit
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Figure 10.48: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for the
b-tagged MU-MU box. The blue contour indicates total SM background predictions
from fit model. The error band on the contours includes only contributions from
statistical fluctuations.
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Figure 10.49: The p-values for the SRs of the b-tagged MU-MU box. z-axis color
scale indicates p-value. The median, mode and 68% probability interval of the yield
distribution for each SR is quoted, together with the observed yield.



314

 [GeV]RM
400 600 800 1000 1200 1400

E
ve

nt
s/

(4
0 

G
eV

) 
  

1

10

210

Data

SM total

 = 7 TeVsCMS P 

 -1 Ldt = 4.7 fb∫  ELE-ELE box • 1 b-tag ≥

   2R
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s/

(0
.0

16
)

1

10

210

Data

SM total

 = 7 TeVsCMS  

 -1 Ldt = 4.7 fb∫ ELE-ELE box • 1 b-tag ≥

Figure 10.50: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for the
b-tagged ELE-ELE box. The blue contour indicates total SM background predictions
from fit model. The error band on the contours includes only contributions from
statistical fluctuations.

[GeV]     RM
500 1000 1500 2000 2500 3000 3500

2
R

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-3
10

-210

-110

1

SR1

SR2

SR3

SR4

SR5

SR6

FR

-1 Ldt = 4.7 fb∫ = 7 TeV s CMS • ELE-ELE box SR p-values • 1 b-tag ≥

ELE-ELE 68% range mode median observed p-value
SR1 (0, 0.8) 0.5 0.5 0 0.99
SR2 (0, 0.7) 0.5 0.5 0 0.99
SR3 (0, 2) 0.5 1.5 1 0.54
SR4 (0, 1) 0.5 0.5 0 0.99
SR5 (0, 2.4) 0.5 1.5 1 0.69
SR6 (0, 5.2) 2.5 3.5 6 0.26

Figure 10.51: The p-values for the SRs of the b-tagged ELE-ELE box. z-axis color
scale indicates p-value. The median, mode and 68% probability interval of the yield
distribution for each SR is quoted, together with the observed yield.
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likelihood for each of the background shape parameters, with penalty parameters for

the UEC coming from the MU box fit values, except for the effective first component

which is floated freely in the fit, as in the inclusive HAD box.

The 1D MR and R2 projections of the 2D fit in the full razor plane are shown

in figure 10.52. The p-values quantifying the agreement between the background

model prediction and observed event yields in the HAD box signal regions are shown

in figure 10.53. The component labeled V+jets is actually made of predominantly

of tt̄+jets events and, since it is floated freely, plays the role of the effective first

component analogous to that in the inclusive HAD box. In fact, this component is

largely redundant in shape with that labelled tt̄+jets first component, such that this

second component is largely absorbed into the former, with near zero event yield.
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Figure 10.52: Projection of the 2D fit result on MR (Top) and R2 (Bottom) for the
b-tagged HAD box. The blue contour indicates total SM background predictions
from fit model. The yellow contour represents the combined UEC and tt̄+jets first
component. TheV+jets first component contribution is shown red. The error band
on the contours includes only contributions from statistical fluctuations.
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10.7 Model-Dependent Results Interpretation in

SUSY Parameter Space

The model-dependent interpretation of the background model results, p-values re-

flecting the agreement between the predictions of the background model and event

yields observed in data, indicate that predictions are in good agreement with the data

collected in the full razor plane, in all of the final state boxes. This absence of a large

deviation from expectations indicates that there is not significant evidence of BSM

physics events in the R11 4.7 fb−1 7 TeV data sample. Conversely, the agreement

between predictions and expectations can be used to constrain the total number of

new physics events in the dataset which are unaccounted for by the SM background

model.

As described in section 10.2, signal events can appear in different places through-

out the razor plane and in different final states, depending on the masses, decay

interactions and branching fractions of new particles. For each new physics scenario,

the data is queried to see if can accommodate its expected signature by comparing

the likelihood of two hypotheses: the data is best described by the SM background

model or the data is more similar to the expected background with a contribution

from this new physics model. A strong preference for the latter could indicate the

presence of new physics consistent with this particular scenario, while data consistent

with the former can be used to exclude the presence of new physics events, and hence

the possibility of that particular model describing nature.

The likelihood-based hypothesis testing procedure used to place constraints on

hypothetical SUSY models is described in section 10.7.1. The results from the inclu-

sive and b-tagged searches are interpreted in both the CMSSM (see section 8.2.1) and

in a range of simplified models which include only specific sparticle production and

decays, with constraints described in sections 10.7.3 and 10.7.4, respectively.
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10.7.1 Model-Dependent Limit Constraints Setting Proce-

dure

For each hypothetical SUSY scenario a conceptually simple question is asked: does

the observed data spectrum fit better to a background only model, or does it indicate

that a combination of background and signal events provides a better description?

The answer is determined through a statistical analysis of the observed data yields

based on evaluating the mathematical likelihoods of each of these two possibilities.

For each model for which these results are interpreted the two hypotheses, that

signal events consistent with the expectations of this model are present in the collected

data sample (denoted Hs+b) or there is an absence of signal-like events (denoted Hb),

can be expressed as two different likelihoods. The likelihood that the SM background

model alone describing the data in a particular box is given by

Lb =
e−(

∑NSM
i∈SM Ni)

Nevent!

Nevent∏

j=1

[
NSM∑

i∈SM
NiFi(M

j
R, R

2
j )

]
, (10.20)

where the sum over NSM corresponds to the different background components in the

box, the sum over j is over all events in the signal region of the box and the shapes

for the functions Fi are taken from the background model. Similarly, the likelihood

that there are also signal events for a particular model in the data sample can be

written

Ls+b(M) =
e−(

∑
Ni+NS(M))

Nevent!

Nevent∏

j=1

[
NSM∑

i∈SM
NiFi(M

j
R, R

2
j ) +NS(M)PS(MR, R

2|M)

]
,

(10.21)

where NS is the number of expected signal events for the model, PS is the pdf de-

scribing the shape of these events in the razor plane, andM indicates the particular

model being tested. The explicit dependence on the modelM in the likelihood indi-

cates that each is specific to a particular model. NS is fixed according to the expected

production cross section and branching ratios for the model M while PS(MR, R
2) is

also specific to that model. As a result, the conclusions drawn from each hypothesis
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test are only relevant for a single model M; excluding one SUSY scenario has no

direct implication for the existence of another.

The specificity of each hypothesis test is a computational shortcoming but also

a blessing; since the background is described analytically and continuously, these

likelihood-ratio based hypothesis test will only consider events falling in the region of

the razor plane consistent with events from the modelM, ignoring other background

events. This can be understood from the likelihoods from the two hypotheses: When

taking the ratio of the likelihoods, events that fall in regions of MR/R2 space where

PS(MR, R
2|M) is small will cancel in the two likelihood event products, automatically

optimizing the region of the razor plane queried for the existence of that particular

model. This means that only events which look like a particular model are considered

as background to it, while the yields in the rest of the razor plane are ignored.

Signal pdfs PS are described numerically using a binned two-dimensional his-

togram in the razor variables built from simulated signal events for a given model.

In order to avoid discontinuities in the pdfs resulting from limited simulated event

statistics, a variable binning scheme is implemented. In MR, 50 GeV wide bins are

defined starting from the minimal MR for a given box, up to 700 GeV. The following

bin edges are then defined,

[700, 800, 900, 1000, 1200, 1600, 2000, 2800, 3500] . (10.22)

For R2 bin edges are defined as,

[R2
min, 0.2, 0.3, 0.4, 0.5] , (10.23)

where R2
min is the minimum value of R2 in the box (0.11 for the leptonic boxes, 0.18

for the HAD boxes).

Constraints are placed on a hypothetical SUSY modelM with the following pro-

cedure, performed for each box:

• Simulated signal events fromM are used to build the nominal signal pdf PS to
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be used in the likelihood Ls+b(M).

• Systematic uncertainties on the shape and yield PS and NS, respectively, are

included by building an ensemble of alternative signal pdfs, each including ran-

dom variations reflecting these uncertainties. The type and magnitude of these

systematic variations are described in section C.14.2. Log-normal distributions

are used to model the expected event yield in each signal pdf bins, and random

values are generated for each bin in each alternative pdf. For systematic error

correlated across the R2 vs. MR plane these variations are performed coherently

for all of the bins. Otherwise, variations are implemented independently.

• The covariance matrix from the background model fit is interpreted as a multi-

normal pdf of the background shape parameters and yields. For each alternative

signal pdf in the generated ensemble, an alternative background model pdf is

created by sampling the background parameter pdf randomly. This procedure

takes into account not only the errors for each parameter in the background

model but also their correlations.

• Alternative signal and background pdfs are combined to create two collections

of pseudodatasets, one corresponding to outcomes where there are only back-

ground events in the pseudodata sample, and the other with both signal and

background events. The first is created by randomly generating a pseudodataset

from each alternative background pdf. The second collection is created simi-

larly, except adding signal events randomly generated from an alternative signal

pdf to each pseudodataset.

• The likelihoods of the two different hypotheses, Ls+b and Lb, are evaluated

for each pseudodataset. From these values, the test-statistic λ = logQ =

log(Ls+b/Lb) is calculated. The ensemble of pseudodatasets with and with-

out signal events added is used to calculate expected distributions of λ for each

of the hypotheses being tested. By comparing the value of λ evaluated with the

actual data sample observed in the experiment with the expected distributions
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from each hypothesis, quantitative statements about the preference of data for

one or the other can be made.

The distributions of the test statistic λ for a sample model, assuming the two

hypotheses being considered, are shown in figure 10.54 for the HAD box. For pseudo-

datasets with only background events λ tends to smaller values, reflecting the larger

likelihood of hypothesis Hb relative to Hs+b. Conversely, λ becomes large for events

with signal. The value of λ observed in data, along with the expected distributions
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Figure 10.54: Distributions of λ for the background-only and signal+background
hypotheses for a CMSSM model point with M0 = 1000 GeV, M1/2 = 400 GeV,
tan β = 10, A0 = 0 and sgn µ = +. The blue distribution corresponds to the
background-only hypothesis while the orange assumes signal and background events
in the data sample. (Left) The purple line indicates the expected median value of
λ for Hb, while the shaded magenta region indicates the 68% probability interval
centered on this value. (Right) The black line indicates the observed value of λ in
data. This is used, with the expected λ distributions for each hypothesis, to calculate
CLS = CLs+b/(1-CLb).

of λ for each hypothesis, are used to calculate two probabilities: CLs+b is defined as

the integral of the expected Hs+b λ pdf below the observed value of λ, indicated by

the shaded orange region in the example shown in the rightmost plot of figure 10.54.

This is the probability that a hypothetical dataset with signal events from modelM
would have a smaller, or more Hb-like, value of λ. Similarly, 1-CLb (shaded blue in

figure 10.54) is defined as the integral of the expected Hb λ pdf above the observed



322

value of λ, and represents the probability of the SM background producing a more

Hs+b-like configuration than that observed in data, assuming that Hb is true.

The test statistic distributions from each box are combined to form a more pow-

erful test statistic, defined as the sum of the test statistics from each of the boxes.

Since λ is defined as the natural logarithm of the likelihood ratio, this combined test

statistic is equivalent to the logarithm of the ratios of the full likelihoods of each

hypothesis, combining the information from each box final state

λTOT =
boxes∑

i

λi =
∑

i

log
Lis+b
Lib

= log

∏boxes
i Lis+b∏boxes
i Lib

= log
LTOTs+b

LTOTb

. (10.24)

This combination is performed for each pseudodataset and the actual observed data

sample separately.

The metric by which a models are judged to be excluded is called CLS [208,209],

and is defined as

CLS =
CLs+b

(1− CLb)
. (10.25)

While not a probability, CLS is reflective of the p-value CLs+b while being prevented

from becoming artificially large in potentially pathological situations where the ob-

served value of λ is inconsistent with both hypotheses. A model M is said to be

excluded at 95% confidence level (C.L.) if CLS < 0.05 for its hypothesis test.

10.7.2 Systematic Errors in Interpretations

The systematic errors associated with the models of background and signal event

yields are incorporated into the interpretation procedure by variations of the shapes

and yields used to generated events for pseudodatasets. For background events, these

systematic effects are reflected by sampling background shape and yield parameters,

for each pseudo-experiment independently, from the multinormal covariance matrix.

The shape and normalization of the numerical 2D models used to generate signal

events is systematically varied to account for a range of possible mis-modeling effects.
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This effects are integrated into the toys in several different ways. Each pseudodataset

includes samples from each of the boxes, such that systematic variations can be ap-

plied coherently for several boxes to account for effects that apply to each similarly,

like the uncertainty of the selection efficiency of the razor triggers (see section 10.4.1)

or the uncertainty on signal normalization following from the measurement of inte-

grated luminosity in the data samples [210].

Some effects are taken into account by considering signal templates derived from

simulated event samples where properties of the objects in these events are varied ac-

cording to their respective uncertainties. Lepton identification uncertainties, derived

from Z(``) data control samples as described in section 6.1, are used to derive event-

by-event variations of reconstructed leptons’ momenta. The application of analogous

variations for jets and MET following from jet energy scale uncertainties [211, 212]

are explained in section C.14.2.

Uncertainties following from PDFs can result in changes to the shape of signal yield

templates, and are evaluated according to the procedure described in section C.13.

These variations are performed bin by bin in the numerical 2D signal templates,

allowing for these expected shape variations. Similarly, the uncertainty in b-tagging

efficiency is reflected by variations, dependent on the pT of a given jet [30], which can

change the signal yield shape.

Each of these systematic variations are sampled from log-normal distributions

with width set by the estimated magnitude of each of these potential effects. Varia-

tions modeled with normal distributions yield compatible results. The full list of the

systematic effects associated with modeling the signal is summarized in Tab. 10.4.

For effects labeled bin by bin, their size depends on the bin in the R2 vs. MR plane

as well as on the model and box. Effects labelled point by point are evaluated for

each model independently.
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yield systematics
L 6.5%
cross section point by point
trigger efficiency R2-MR 2%
trigger efficiency lepton 3% (lepton, di-lepton boxes)

shape systematics
2D signal shape 20% (bin by bin)
PDF point by point (up to 30%)
JES point by point (up to 1%)
lepton-id (tag and probe) 1% (per lepton)

Table 10.4: Summary of the systematic uncertainties on the signal yield and shape.
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10.7.3 Results Interpretation in the CMSSM

The null results of the inclusive razor search boxes are interpreted in the context of

CMSSM models with varying values m1/2 vs. m0 and with tan β = 10, A0 = 0 and

positive µ. The 2D numerical MR/R2 templates for these models, and correspond-

ing systematic uncertainties, are determined from simulated CMSSM event samples

generated with the PYTHIA6 [213] Monte Carlo program and analyzed using the full

GEANT4-based [214] detector simulation, with the same reconstruction chain performed

on events collected from real collisions. The sparticle mass spectrum for these models

is calculated with SOFTSUSY [215] and decays with SUSYHIT [216]. The events are

generated with PYTHIA6 through the SLHA interface [217]. Next-to-leading order

(NLO) plus next-to-leading-logarithm (NLL) cross section calculations [218–223] are

used to normalize the different production channels independently.

CLS is calculated through the likelihood ratio hypothesis test for each model, and

a model is considered excluded at 95% confidence level if CLS < 0.05. The result of

interpreting the inclusive analysis in the CMSSM according to this metric is shown in

figure 10.55. Models falling below the observed limit lines are excluded at a C.L. of

at least 95%. The total observed limit is less constraining than the median expected

limit at lower m0 due to squark-squark production having a harder R2 distribution

(relative to gluino-gluino) and a local excess of events at large R2 in the inclusive HAD

box. Cascading decays of gluinos yield more leptons than squark decays, resulting in

the contribution of the lepton final state boxes increasing in magnitude, relative to

the HAD box, with increasing m0.
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Figure 10.55: Observed (solid blue curve) and median expected (dot-dashed curve)
95% C.L. limits in the (m0, m1/2) CMSSM plane [224] with tan β = 10, A0 = 0,
sgn(µ) = +1 from the inclusive razor analysis. The ± one standard deviation equiva-
lent variations in the uncertainties are shown as a band around the median expected
limit. The observed limits resulting from an analysis of only the HAD or leptonic
boxes independently are indicated as solid crimson and green lines, respectively.

The signal-like fluctuation of the observed limit relative to the expected in the

HAD box is illustrated in figure 10.56. Despite the fact that the CMSSM favors the

hadronic final state with strong production of squarks and gluinos, an important frac-

tion of events are selected in the lepton boxes, as indicated in the selection efficiency

figures contained in section C.14.1. Overall, the observed limits are in agreement with

expectations, reflecting the lack of deviations between the background predictions and

observed data consistent with signal in each of the boxes.
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Figure 10.56: (Left) Observed (solid curve) and median expected (dot-dashed curve)
95% CL limits in the (m0, m1/2) CMSSM plane for the HAD box with ± one standard
deviation uncertainties around the median expected limit. (Right) Observed and
expected limits for the combined lepton boxes.
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10.7.4 Simplified Model Interpretation

The null search results are also interpreted as cross section upper limits on a number

of simplified models [225–227] where a limited set of hypothetical particles and decay

chains are introduced to produce a given topological signature. Specific applications

of results according to these Simplified Mass Spectra (SMS) models have appeared

in Refs. [180, 181, 226, 227]. For each model studied, a cross section at 95% C.L.

is derived, as a function of the mass of the produced particles (gluinos or squarks,

depending on the model) and a single neutralino mass. These cross section upper

limits are compared with NLL-NLO calculations of the production cross sections of

these sparticles, and corresponding uncertainties [223], in order to identify regions

of excluded sparticle mass-parameter space. These cross sections are summarized in

figure 10.57.
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Figure 10.57: Theoretical cross sections for gluino, squark and stop pair production,
calculated with Prospino2.0 [223,228].

10.7.4.1 Models with Squarks and Gluinos Decaying to Jets

We interpret the results of the inclusive search analysis for two SMS models with

decays to light-quark jets, illustrated in figure 10.58. The model T1 describes gluino

pair production, with each gluino undergoing a three-body decay to two light quarks

and a neutralino. Similarly, the model T2 has events with pair-produced squarks,
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each decaying directly to a light quark and neutralino.
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Figure 10.58: SMS models T1 and T2 with pair-produced gluinos or squarks decaying
to two or one light quarks and a neutralino, respectively.

The phenomenological properties of these models are discussed in section 10.2,

where the sparticle mass dependence on the shape of signal yields in the razor plane

is explained. This migration of signal events with changing masses is reflected in the

derived cross section upper limits for these models, shown in figure 10.59. Models

whose events populate the razor plane in regions with more background events (low

MR/low-R2) tend to have larger cross section upper limits, with a strong correspon-

dence with the squark/gluino and neutralino mass difference due to the MR peak

position varying with its value.

In order to evaluate potential systematic uncertainties due to modeling of initial

state radiation (ISR), particularly for models with compressed squark/gluino and

neutralino spectra, we consider variations of the scale parameters which dictate ISR

behavior in simulated events. Model points which are found to have a large depen-

dence are excluded from the results, as described in section C.14.2.2, and are indicated

in grey. The majority of the events produced in these models populate the HAD box,

with the selection efficiency as a function of sparticle masses shown in section C.14.1.

When interpreted in the context of the theoretical squark and gluino production cross

sections, the excluded parameter space corresponds closely to the expected sensitivity

of the analysis, with variations around the median expected limit of small magnitude

(relative to experimental uncertainties) and consistent with the agreement of observed
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Figure 10.59: Cross section upper limit as a function of model mass spectrum for
T1 (Left) and T2 (Right) from the inclusive razor analysis. The color scale (z-axis)
indicates the observed cross section upper limit for each model point. The solid black
line indicates the observed exclusion region, assuming nominal NLO+NLL SUSY
production cross sections for squarks and gluinos, as a function of their masses with
dotted black lines reflecting the ±1 σ theory errors around the nominal cross section.
The solid green line marks the median expected exclusion region, with dotted green
lines indicating the expected exclusion with ±1 σ experimental uncertainties. The
solid grey region indicates model points where the analysis was found to have depen-
dence on ISR modeling in simulation of signal events above a predefined tolerance;
no interpretation is presented for these model points.
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inclusive HAD box yields with expectations from the background prediction.

10.7.4.2 Models with Sbottoms and Gluinos Decaying to

b-quarks

Motivated by the importance of the superpartners to the third generation quarks

in the cancellation of quadratic divergences to the Higgs mass, we consider models

with real and virtual sbottom production with decays to b-quarks. The results of the

b-tagged analysis is used to constrain these models, which are shown pictorially in

figure 10.60. The model T1bbbb describes gluino pair production, with each gluino

undergoing a three-body decay to two b-quarks and a neutralino. Similarly, the model

T2bb has events with pair-produced sbottoms, each decaying directly to b-quark and

neutralino.
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Figure 10.60: SMS models T1bbbb and T2bb with pair-produced gluinos or sbottoms
decaying to two or one b-quarks and a neutralino, respectively.

Cross section upper limits for T1bbbb and T2bb are shown in figure 10.61. The

events from these b-tagged-jet enriched models have kinematics very similar to the

light-quark models T1 and T2, with cross section upper limits increasing with larger

gluino/sbottom and neutralino mass differences. Contributions from the b-tagged

HAD box provide the most sensitivity to these models, with some sensitivity coming

from the MU and MU-MU boxes due to muons being reconstructed from semi-leptonic

b-meson decays. As a result, the agreement between the observed exclusion line and

expected is a convolution of the background observation and prediction differences in
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the HAD box with the expected location of signal events in the razor plane. From the

b-tagged background prediction results described in section 10.6, we observe that the

data shows a background-like deviation in the high R2 region of the HAD box, result-

ing in models with larger values of R2 being more tightly constrained than expected.

For sbottom pair production, the di-stop production cross section of figure 10.57 is

used for comparison with cross section upper limits.
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Figure 10.61: Cross section upper limit as a function of model mass spectrum for
T1bbbb (Left) and T2bb (Right) following from the b-tagged razor analysis. The color
scale (z-axis) indicates the observed cross section upper limit. The solid black line
indicates the observed exclusion region with ±1 σ theory errors. The solid green line
marks the median expected exclusion region, with ±1 σ experimental uncertainties.

10.7.4.3 Models with Sparticles Decaying to Top Quarks

The results of the inclusive and b-tagged jet searches are interpreted in two simplified

scenarios where sparticles decay to SM top quarks. Model T1tttt includes gluino pair

production, where each gluino decays through a virtual (very heavy) stop to two top

quarks and a neutralino. The second model, T2tt, has pair-produced stops decaying

directly to a top quark and a neutralino. Illustrations of these models are shown in

figure 10.62.

The large number of top quarks produced in these events implies that there will

also be W bosons and b-quarks from decays. This results in events being democrat-

ically distributed throughout the different final state boxes according to the number
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Figure 10.62: SMS models T1tttt and T2tt with pair-produced gluinos or stops de-
caying to two or one top quarks and a neutralino, respectively.

and decay type of the W bosons and an enhancement in signal-to-background for the

b-tagged analysis. The cross section upper limits following from both search analy-

ses for these top-enriched models are presented in figure 10.63. We observe that the

b-tagged analysis has increased sensitivity to these models, relative to the inclusive

search, because of reduced backgrounds. The sensitivity to these models is achieved

through a combination of the results from all of the final state boxes which, in this

case, contribute with comparable magnitudes

10.8 Conclusion

We have performed a search for evidence of sparticle production using a data sample

of 4.7 fb−1 integrated luminosity from pp collisions at
√
s = 7 TeV, recorded by

the CMS detector at the LHC. The search was based on the razor variables, MR

and R, which are used to distinguish between events containing two or more weakly

interacting particles resulting from the decays of new, heavy sparticles and the SM

backgrounds in final states with jets, missing transverse energy and with and without

leptons and b-tagged jets.

Over many different final states, in both the inclusive and b-tagged jet analyses,

no significant deviation from the predicted background shapes and yields is observed.

This null result is interpreted as 95% C.L. limits in the (m0,m1/2) CMSSM parameter
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Figure 10.63: Cross section upper limit as a function of model mass spectrum for
T1tttt (Left) and T2tt (Right) interpreted with the inclusive (Top) and b-tagged
(Bottom) razor analyses. The color-scale (z-axis) indicates the observed cross section
upper limit. The solid black line indicates the observed exclusion region with ±1 σ
theory errors. The solid green line marks the median expected exclusion region, with
±1 σ experimental uncertainties.

space, where for mq̃ ∼ mq̃ we exclude squarks and gluinos up to 1.35 TeV in mass,

and for mq̃ > mg̃ gluinos up to 800 GeV.

The results are also interpreted in a collection of simplified models, with excluded

sparticle masses summarized in figure 10.64. For these models, gluinos are excluded

with masses as large as 1.1 TeV, for small neutralino masses, and first-two genera-

tion squarks, stops and sbottoms are excluded up to about 800, 425 and 400 GeV,

respectively.

The strength of these constraints on hypothetical SUSY parameter space high-

lights the features of the razor analysis approach; the continuous modeling of the
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Figure 10.64: Summary of largest excluded sparticle masses in simplified models for
the inclusive (left) and b-tagged jet (right) razor searches, for different neutralino
masses.

background ensures that the knowledge of signal and background shapes in the razor

plane is exploited maximally. Partitioning the event sample according to final state

increases sensitivity to models with an enrichment in lepton final states, as does the

b-tagged jet selection for those with many b-quarks. The highly efficient razor trig-

gers allow these searches to extend to large regions of phase space, correspondingly

constraining large volumes of SUSY model parameter-space with accuracy.
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Chapter 11

Future Searches

In chapters 9 and 10 we introduced the event kinematic variables MR and R and

described how they could be used to search for SUSY and other BSM theories in

inclusive final states with jets, leptons and missing transverse energy. The approach

involved grouping all the particles measured in the detector into two distinct mega-

jets based on their kinematics, effectively casting each event into a two visible object

topology where the razor variables could be calculated and used to study the event.

This approach was necessary due to the combinatorial ambiguity of the final state;

when searching inclusively for a general class of phenomena it is not possible to use

the specific details of a particular model to help assign particles to one decay chain

or another. The result is that jets from initial state radiation are included in these

mega-jets, leading to the MR/R phenomenological scaling behavior which is exploited

in these searches.

To complement these inclusive searches we have developed a suite of exclusive

search strategies. These are appropriate for looking for specific, well-motivated signal

topologies in final states where, based on the type of particles reconstructed, one

knows which decay chain to assign them to. In the following chapter we describe a

new strategy for studying inclusive and exclusive final states and explain a systematic

approach for deriving appropriate razor variables for each case. The phenomenology of

these variables is demonstrated in the example of H → WW → (`ν)(`ν) where we see

that we are able to extract information about the H mass and the angular properties

of its decays. Finally, we introduce a new set of kinematic variables designed to study
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events with pairs two-step decay chains, like t → Wb → (`ν)b, and independently

extract the characteristic scale of both decays. The possible application of these

variables to a search for new-symmetry partners of the top quark is described.

11.1 The Generalized Approach to Razor Variables

We return once again to the canonical event topology of the pair production of new

particles Si, each decaying to a reconstructable SM particle, Qi and a weakly in-

teracting, potentially massive, particle χi, illustrated in figure 11.1. In the previous

derivations of razor variables, we made several assumptions about the kinematics

of these events; we assumed that the transverse momentum of the CM system was

negligible, the masses of the visible particles are negligible and the particles Si are

produced with energy as close to the 2MS threshold as kinematically possible. The

generalized approach to these topologies involves only one assumption: that the two

decay chains are symmetric, in that the particle content of each decay is identical. In

this section we see how this single principle can be used to approximately reconstruct

events of this type.

S2

S1

p

p Q1

χ1

Q2

χ2

Figure 11.1: Canonical event topology illustrating pair production of particles Si in
a pp collision, with each Si decaying as Si → Qiχi.

Using the notation of section 9.1.1, we recall that the particles Si, Qi and χi are

represented by four vectors si, qi and νi, respectively, and that the superscripts on

these quantities indicate which reference frame they are being evaluated in. The
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condition of symmetry between the two decay chains can be summarized as

s2
1 = s2

2 = M2
S, ν2

1 = ν2
2 = M2

χ, q2
1 = q2

2 = M2
Q . (11.1)

With this symmetry condition, the particles Qi and χi have a fixed, characteristic

momentum P∆ in their respective Si rest frames, which can be expressed as

M∆ ≡ |~P∆
1 | = |~P∆

2 | =
√

(M2
S − (Mχ −MQ)2)(M2

S − (Mχ +MQ)2)

2MS

. (11.2)

In order to reconstruct the scale M∆ we must move the visible particles Qi from

the lab frame to approximations of their respective Si rest frames. The series of

transformations these approximations are meant to represent are illustrated in fig-

ure 11.2. There are two unknown velocities ~βCM and ~βL = {~βT , βz}, the first of which

is applied asymmetrically (opposite directions) to Q1 and Q2 while the second acts

symmetrically on the two particles. In order to derive expressions for these velocities

we factorize the problem. We first work in the CM frame to derive an approxima-

tion for βCM . Subsequently, we demonstrate how these CM quantities can used to

approximate ~βL.

~P∆
i

−~P∆
i

Si rest frame

Qi

χi

Si
−~βCM ~βCM

CM frame

S2 S1

√
ŝ

~βT
βz

lab frame

√
ŝ

Figure 11.2: The four relevant reference frames of the canonical topology. (Left) In
the Si rest frames the particles Qi and χi recoil against each other with characteristic
momentum P∆

i . (Center) In the CM frame S1 and S2 travel in opposite directions
with velocity βCM . (Right) In the lab frame, the CM system is traveling with a

longitudinal velocity βz and transverse velocity ~βT .



339

11.1.1 β̃R in the CM Frame

The CM frame is related to the Si rest frames by the asymmetric boost ~βCM , with

three unknown d.o.f.. There is only one absolute constraint on ~βCM : after its appli-

cation, the particles Qi must have the same energy in their respective Si rest frames.

This symmetry condition can be expressed as a constraint on our expression for ~βCM ,

which we denote ~βR

ES
Q1

= ES
Q2

⇒ γR(ECM
Q1
− ~βR · ~q CM

1 ) = γR(ECM
Q2

+ ~βR · ~q CM
2 ) (11.3)

⇒ ~βR · (~q CM
1 + ~q CM

2 ) = ECM
Q1
− ECM

Q2
.

We see that this condition dictates the magnitude of ~βR in the direction (~q CM
1 +~q CM

2 ).

What remains is to determine ~βR in the perpendicular directions. We expand ~βR in

an orthonormal basis, taking (~q CM
1 +~q CM

2 ) as the first direction. The choice of basis

is illustrated in figure 11.3.

v̂2

~q2

v̂1~q1

v̂3

v̂1 ≡ ~q1+~q2
|~q1+~q2| v̂2 ≡ (~q1+~q2)×(~q2×~q1)

|(~q1+~q2)×(~q2×~q1)| v̂3 ≡ ~q2×~q1
|~q2×~q1|

Figure 11.3: Q1 and Q2 in the CM frame. The plane defined by the momentum ~q1

and ~q2 is illustrated. An orthonormal basis v̂i is defined based on these momenta.

We can write ~βR in this basis as

~βR = β1v̂1 + β2v̂2 + β3v̂3 , (11.4)
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and the condition equation (11.3) requires that

β1 =
ECM
Q1
− ECM

Q2

|~q CM
1 + ~q CM

2 | . (11.5)

Now we must assign values to β2 and β3, the latter of which is a particularly

difficult d.o.f.. Since it is a boost perpendicular to both ~q CM
1 and ~q CM

2 it will only

multiply ES
Qi

by a constant factor. Additionally, it will have the same effect regardless

of its sign. This is an indication of the fact that, without a priori knowledge of the

new particle masses in these events, we have no constraining information about β3

whatsoever. Any variable, V , we construct that depends on ~βR will satisfy

∂V

∂β3

∣∣∣
β3=0

= 0 . (11.6)

Given this consideration, we set β3 = 0.

In the derivation of MR from chapter 10 we removed a d.o.f. by appealing to the

fact that, for non-resonant S pair production, γCM will generally be close to one. We

could take the same approach here and set β2 = 0, arguing that this choice minimizes

γR. Let us denote this solution as γmin, such that ~βmin = β1v̂1. We will see later

that this choice will result in the variables γR∗ and MR∗ derived in section 10.1. The

shortcoming of this choice is that γmin will not scale with the true value of γCM . If the

particles Si are produced through a heavy s-channel resonance γCM will be fixed at a

value greater than one. Ideally, we want our approximation γR to contain information

about γCM , particularly if it is concentrated at nontrivial values.

A choice for β2 that will give sensitivity to the true value of γCM can be derived

by appealing to a different principle. Rather than minimizing γR, we can minimize

(ES
Q1

+ ES
Q2

). Conceptually, this choice will turn (ES
Q1

+ ES
Q2

) into a quantity that

will be invariant under asymmetric boosts in the direction v̂2. This choice yields

∂(ES
Q1

+ ES
Q2

)

∂β2

= 0 ⇒ β2 =
v̂2 · (~q CM

1 − ~q CM
2 )

ECM
Q1

+ ECM
Q2

. (11.7)
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Curiously, with above choice for β2 the expression for ~βR becomes simpler,

~βR = β1v̂1 + β2v̂2 =
~q CM

1 − ~q CM
2

ECM
Q1

+ ECM
Q2

. (11.8)

In fact, our solution for ~βR satisfies

∂(ES
Q1

+ ES
Q2

)

∂β1

∣∣∣
~βCM=~βR

= 0 , (11.9)

even with β1 chosen for seemingly independent reasons. We have found that the

principle of choosing a ~βR which minimizes (ES
Q1

+ES
Q2

) implies the original symmetry

constraint from equation (11.3).

To summarize, we have derived two possible solutions for ~βCM , which we denote

~βmin and ~βR. In the following sections we will see how these variables behave, partic-

ularly in the context of moving from the CM frame to the lab frame.

11.1.2 From the Lab Frame to the R Frame

We have derived two solutions to our problem in the CM, but we must now try to

express our CM frame variables in terms of the particles measured in the detector,

which corresponds to the lab frame. The two reference frame are related by a boost,

~βL, corresponding to the velocity of the CM system. In this section we derive an

approximation of this boost denoted ~βLR , which will move from the lab frame to an

approximation of the CM frame, denoted the R-frame.

Now, there are several constraints that ~βLR must satisfy. Firstly, the expressions

for the momenta of the particles Qi in the R frame must be invariant under longi-

tudinal boosts. Secondly, the transverse component of ~βLR must point in a specific

direction. Appealing to conservation of transverse momentum, we can interpret the

missing transverse energy in the event ( ~M) as the vectorial sum of the transverse

momenta of the χi particles. Denoting the momentum of the CM system in the lab
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frame ~PCM , we observe that

~βLR =
~PCM

√
|~PCM |2 + ŝ

=
{ ~M + ~q l

1T + ~q l
2T , P

CM
z }√

|~PCM |2 + ŝ
. (11.10)

Since an expression for PCM
z can be derived by requiring invariance of our final ob-

servables under longitudinal boosts, if we knew the value of ŝ then the boost would

be completely determined.

Returning to our expressions for the asymmetric CM frame boosts ~βR we construct

an approximation for
√
ŝ. We cannot calculate this quantity in the CM frame, even

if our approximations for ~βCM hold exactly, because we do not know the mass Mχ.

As we have previously seen, our sensitivity to the actual masses MS and Mχ is quite

poor; only the expression of mass differences M∆ can be extracted from events of this

type in general. Given this situation, we choose to interpret this mass difference as

an actual mass. Specifically, if we assume that Mχ = MQ then exactly one half of

the energy of each particle Si is given to each particle Qi in the Si rest frame, such

that MS = 2ES
Qi

. Using our expressions for ES and γR in terms of the CM frame

observables, and recalling that
√
ŝ = 2γCMMS, we can construct an approximation

of
√
ŝ, denoted

√
ŝR, given by

√
ŝR = 2γR(ES

Q1
+ ES

Q2
) = 2(ECM

Q1
+ ECM

Q2
). (11.11)

Hence
√
ŝR is simply two times the sum of the Qi energies in the CM frame. Inter-

estingly, choosing ~βmin instead of ~βR as an approximation of ~βCM results in the same

expression for
√
ŝR.

We can now solve for
√
ŝR in terms of ~PCM and our lab frame observables by

relating ŝR to the energies of the visible objects in their respective S frames, which

depend on the boosts from the CM frame

√
ŝR = 2(ECM

Q1
+ ECM

Q2
) = 2γLR(El

Q1
+ El

Q2
− ~βLR · (~q l

1 + ~q l
2 )) . (11.12)



343

Interpreting
√
ŝR as the mass of the particles S, this relation results in a quadratic

constraint on
√
ŝR ,

√
ŝR = 2

√
ŝR + |~PCM |2
√
ŝR

(El
Q1

+ El
Q2

)− 2
~PCM · (~q l

1 + ~q l
2 ))√

ŝR
, (11.13)

which gives the solution

ŝR = 2(El
Q1

+ El
Q2

)2 − 2~PCM · (~q l
1 + ~q l

2 ) (11.14)

± 2(El
Q1

+ El
Q2

)
√

(El
Q1

+ El
Q2

)2 + |~PCM |2 − 2~PCM · (~q l
1 + ~q l

2 ) .

The two-fold sign ambiguity is resolved by choosing the positive solution, which en-

sures that
√
ŝR is real and positive. There is now only one remaining unspecified

d.o.f., which corresponds to PCM
z . We can assign a value to PCM

z and ensure that the

subsequent kinematic variables are invariant under longitudinal boosts simultaneously

by requiring

∂
√
ŝR

∂PCM
z

= 0 (11.15)

⇒ PCM
z = (ql1z + ql2z)

[
1 +

√
1 +
|~PCM
T |2 − 2~PCM

T · (~q l
1T + q l

2T )

(El
Q1

+ El
Q2

)2 − (ql1z + ql2z)
2

]
,

where ~PCM
T = ~M + ~q l

1 + ~q l
2 . We note the appearance of the factor [(El

Q1
+ El

Q2
)2 −

(ql1z + ql2z)
2], which is equivalent to our expression for MR from section 10.1. Defining

M0
R ≡

√
(El

Q1
+ El

Q2
)2 − (ql1z + ql2z)

2 , (11.16)

we can express
√
ŝR as

√
ŝR = 2(M0

R)2 − 2~PCM
T · (~q l

1 + ~q l
2 ) (11.17)

+ 2M0
R

√
(M0

R)2 + |~PCM
T |2 − 2~PCM

T · (~q l
1T + q l

2T ) .
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We observe that as PCM
T → 0 equations (11.16) and (11.18) simplify to

√
ŝR

∣∣∣
PCMT →0

= 2M0
R , PCM

z

∣∣∣
PCMT →0

= 2(q1z
l + q2z

l) , (11.18)

which corresponds to the original solution to this event topology derived in sec-

tion 10.1. In fact, we see that the longitudinal and transverse parts of the boost ~βLR

can be factorized. Applying the boost ~βLR with PCM
z taken from equation (11.16)

is equivalent to first applying a longitudinal boost βLRz followed by the transverse

boost ~βLRT with values

βLRz =
ql1z + ql2z
El
Q1

+ El
Q2

, ~βLRT =
~M + ~q l

1T + ~q l
2T√

|~PCM
T |2 + ŝR

. (11.19)

Both sets of transformations result in identical R-frames and the longitudinal boost

βLRz is identical to the analogous βL∗ from section 10.1. We see that we have re-

derived the original razor variables for the case PCM
T → 0 but have also developed an

effective pCMT -correction through the boost ~βLRT , which turns 2M0
R into

√
ŝR in from

equation (11.18).

11.1.3 Calculation of MR and β̃R

We can now calculate the transformations through each of the reference frames of

interest in terms of the observables we measure in the laboratory frame: the four

vectors of the two visible particles, ql1 and ql2, and the missing transverse energy,

~M . We interpret the vectorial sum of the missing transverse energy and the visible

particles’, qi, transverse momentum as the transverse momentum of the CM system,

~PCM
T , such that

~PCM
T = ~M + ~q l

1T + ~q l
2T . (11.20)

Our estimate for the invariant mass of the CM system,
√
ŝR, is given by equa-

tion (11.18) in terms of M0
R, defined in equation (11.16).
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First, we move the four vectors qli from the lab frame to our approximation of the

CM frame, which we denote the R-frame. This is accomplished through two Lorentz

transformations: a longitudinal boost, βLRz followed by a transverse boost, ~βLRT ,

both defined in equation (11.19). The energies and momenta of the particles qi can

be expressed in the R-frame as

ER
Qi

= γLRT

(
γLRz

(
El
Qi
− βLRzqliz

)
− ~βLRT · ~q l

iT

)
, (11.21)

~q R
iT = ~q l

T i + (γLRT − 1) ~q l
T i · β̂LRT β̂LRT − γLRTγLRz

(
El
Qi
− βLRzqlzi

)
~βLRT ,

qRiz = γLRz
(
qliz − βLRzEl

Qi

)
.

From the R-frame, we next move each particle qi to their respective approximate

Si rest frames. This is accomplished through our approximation of ~βCM , denoted ~βR

and given by

~βR =
~q R

1 + ~q R
2

ER
Q1

+ ER
Q2

. (11.22)

This boost is applied asymmetrically to q1 and q2, since S1 should be recoiling against

S2 in the R-frame. The energies and momenta of the particles qi can be expressed in

their respective Si rest frames as

ES
Q1

= γR

(
ER
Q1
− ~βR · ~q R

1

)
, (11.23)

ES
Q2

= γR

(
ER
Q2

+ ~βR · ~q R
2

)
.

~q S
1 = ~q1 + (γR − 1) ~q R

1 · β̂Rβ̂R − γRER
Q1
~βR ,

~q S
2 = ~q2 + (γR − 1) ~q R

2 · β̂Rβ̂R + γRE
R
Q2
~βR .

The R frame mass, MR, is our estimator of M∆ and is defined as

MR = (ES
Q1

+ ES
Q2

) =
√

(ER
Q1

+ ER
Q2

)2 − |~q R
1 − ~q R

2 |2 , (11.24)
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and is related to
√
ŝR, which is our estimator of 2γCMM∆, by

√
ŝR = 2γRMR . (11.25)

11.1.4 Properties of MR and β̃R

In order to see how MR and ~βR behave under different conditions, we consider a toy

simulation of the production and decays shown in figure 11.1. We assume trivial

matrix elements for each of the decays, and allow the possibility to either fix γCM

at a particular value (corresponding to resonant S pair production through a heavy

s-channel particle) or vary it according to a predefined distribution. Non-trivial γCM

distributions are derived by considering the toy two scalar model from section 9.1.1

and using PDF parameterizations corresponding to gluon-gluon interactions, which

are expected to dominate in the production of increasingly heavy particles, relative

to quark interactions, at the LHC.

Using this toy simulation, we first study the dependence of the reconstructed γR

distribution as a function of the true value of γCM . From figure 11.4 we observe that

the peak position of the γR distribution scales with γCM . This is compared with the

variable γmin which, since it was derived to minimize γ, peaks at one for all γCM .

Similarly, in figure 11.5 we see how the quantities γRMR and MR are sensitive to the

characteristic scale M∆ regardless of γCM . As γCM increases, the resolution of M∆

degrades, but only to an asymptotic maximum. We find that, even for very large

γCM , we are still able to resolve both γCM and M∆.

This fact is illustrated succinctly in figure 11.6, where we see the two dimensional

γRMR/MR peak. By allowing γR to scale with the true value of γCM we now have

sensitivity to two scales in these events, γCM and M∆. The lack of strong correla-

tions between γRMR and MR (indicated by a peak in figure 11.6 rather than a long

ridge) indicate that we are resolving these scales largely independent of each other.

Furthermore, figure 11.7 demonstrates that these scales can be resolved regardless of

the true value of M∆.
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Figure 11.4: (Left) Distribution of γR and γmin for different values of γCM . (Right)
Distribution of γR/γCM as a function of γCM . Toy simulations are performed with
MS = 1 TeV, Mχ = 500 GeV and MQ = 0.
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Figure 11.5: (Left) Distribution of γRMR/γCMM∆ as a function of γCM . (Right)
Distribution of MR/M∆ as a function of γCM . Toy simulations are performed with
MS = 1 TeV, Mχ = 500 GeV and MQ = 0.
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Figure 11.6: Distribution of γRMR/M∆ vs. MR/M∆. Both variables are indepen-
dently sensitive to the same characteristic scale. Toy simulations are performed with
MS = 1 TeV, Mχ = 500 GeV and MQ = 0 with γCM taken from a nontrivial distri-
bution.
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Figure 11.7: (Left) Distribution of γRMR/γCMM∆ as a function of M∆ for fixed MS.
(Right) Distribution of MR/M∆ as a function of M∆ for fixed MS. Toy simulations
are performed with MS = 1 TeV and MQ = 0 with γCM taken from a nontrivial,
realistic distribution. Mχ is varied in order to vary M∆.
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Finally, we evaluate the effect of non-zero PCM
T on our kinematic variables. With-

out the pT correction corresponding to ~βLRT the expressions for MR and γR are not

invariant under transverse boosts, meaning that their ability to resolve their respec-

tive scales will degrade with increasing PCM
T . This fact is illustrated in the figure 11.8,

along with the remarkable observation that, with the transverse boost ~βLRT applied,

the variables MR and γR are nearly independent of PCM
T . This means that the de-

rived expressions are, in a sense, nearly invariant under all Lorentz transformations,

a striking property for a mass-sensitive variable that is shared only by the canonical

invariant mass.

∆M
CM

γ / RM
R

γ
0.5 1 1.5 2 2.5

s
 / 

 
C

M
Tp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2

0.4

0.6

0.8

1

- corrected]
T

 [p∆ / MRM
R

γ
0.5 1 1.5 2 2.5

s
 / 

 
C

M
Tp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a.
u.

0.2

0.4

0.6

0.8

1

∆ / MRM
0 0.5 1 1.5 2 2.5

s
 / 

 
C

M
Tp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a.
u.

0

0.2

0.4

0.6

0.8

1

- corrected]
T

 [p∆ / MRM
0 0.5 1 1.5 2 2.5

s
 / 

 
C

M
Tp

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a.
u.

0

0.2

0.4

0.6

0.8

1

Figure 11.8: (Top) γRMR/γCMM∆ as a function of pCMT . (Bottom) MR/M∆
as a

function of pCMT . (Left) Not transverse pT correction is applied. (Right) The boost
~βLRT to move events to the R frame. Toy simulations are performed with MS = 1
TeV, Mχ = 500 GeV and MQ = 0 with γCM taken from a nontrivial distribution.

Having returned a final time to the general razor topology we have re-derived

the original razor variables in a simpler, systematic way. In the process, we have

discovered sensitivity to a new scale in these events: γCM , which is approximated by
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γR. We have also developed a procedure for making these variables almost completely

invariant under all possible transformations, yielding robust indicators of the scales

of new physics.

11.2 The Razor for H→WW→ (`ν)(`ν)

As an example application of the variables γR and MR we consider the case of a

Higgs boson decaying to two W bosons, each then decaying leptonically. This type of

event is Illustrated in figure 11.9. The similarity between this decay topology and the

one used to derive the razor variables (figure 11.1) is clear. The massive W bosons

undergo two-body decays to leptons and neutrinos, the latter escaping detection. The

two leptons are reconstructed in the detector and can be used to calculate the razor

kinematic variables. In these events, the characteristic scale M∆ is given by

M∆ =
M2

W −M2
ν

MW

∼MW . (11.26)

Since the Higgs mass is fixed, γCM takes a fixed value equal to γCM = MH/2MW ,

assuming the Higgs is sufficiently massive to produce two on-shell W s. If this is the

case, the construction 2γRMR will peak at the Higgs mass. For convenience, we define

MpT−corr
R ≡ 2γRMR for this discussion.

H

W2

W1

p

p `1

ν1

`2

ν2

Figure 11.9: Illustration of a H → WW → (`ν)(`ν) event.

Using the CMS full simulation, we examine H → WW and SM background events

in the di-lepton final state. Leptons are identified using the same algorithms as the
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CMS SUSY search described in Chapter 10. We select events from these simulated

samples requiring that each has two identified leptons with opposite charges and that

one has pT > 20 GeV/c while the second has pT > 10 GeV/c. These requirements

mimic part of the selection for a real analysis and ensure that we could trigger on

these events in collision data.
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Figure 11.10: (Left) Distribution of MpT−corr
R for simulated H → WW events with

varying Higgs mass. (Right) Distribution of MpT−corr
R for SM backgrounds in the

di-lepton final state.

With this selection applied, we calculate MpT−corr
R for signal samples with differ-

ent Higgs masses and SM background samples. The resulting distributions are shown

in figure 11.10. We see that the variable MpT−corr
R peaks at the Higgs mass, as ex-

pected. The resolution of this mass peak degrades in both relative and absolute terms

with increasing MH , as predicted from previous studies of the resolution dependence

of MpT−corr
R with increasing γCM , and also from an increasing intrinsic Higgs mass

width. Similarly, the SM backgrounds have features at their own respective mass

scales. The MpT−corr
R distribution for non-resonant qq̄ → WW events reflects the dif-

ferential distribution of
√
ŝ for this process (it is topologically identical to the signal

process), while the tt̄ background distribution mimics the invariant mass distribu-

tion of the W s in these events. Z+jets events, which comprise an especially difficult

experimental background to this final state when the leptons have the same flavor

due to a large cross section and the potential for missing transverse momentum from

jet mis-measurements, peak a the 2MZ pole, with a low tail with the shape of the
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Drell-Yan di-lepton invariant mass distribution.
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Figure 11.11: Distribution of MpT−corr
R for simulated H → WW events with varying

Higgs mass. (Left) MpT−corr
R shown in absolute scale, with peak position equal to the

Higgs mass. (Right) MpT−corr
R distribution normalized to Higgs mass.

We also consider cases where the Higgs mass is below the 2MW threshold, such

that at least one of the W bosons is produced off-shell. Despite violating the decay

chain symmetry requirements that were used to derive MpT−corr
R , we observe in fig-

ure 11.11 that MpT−corr
R still peaks at the Higgs mass for these events. This property

can be understood from the toy studies described in section 9.1.1 and 10.1 where

it was demonstrated that razor mass variables are sensitive to an effective average

characteristic scale of the two decay chains. In this scenario, the average, multiplied

by the factor γR, is equivalent to one half the Higgs mass. In fact, we see that the

variable MpT−corr
R can resolve the Higgs mass better when it is below the 2MW thresh-

old compared to when it is above. The relative resolution for these off-shell cases is

insensitive to the actual value of the Higgs mass, as demonstrated in the rightmost

plot in Fig 11.11.

In addition to the mass scale, angular information can be used to discriminate

between signal events and non-resonant SM WW production. For example, the az-

imuthal angle between the two leptons, ∆φ``, is sensitive to the helicities and pro-

duction mechanism of the W pair and takes smaller values, on average, for signal

events (assuming a JPC = 0++ Higgs). A challenge when using angles like this to

discriminate between processes is that they are not invariant under transverse boosts.
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If the WW system has nonzero transverse momentum then the two leptons will be-

come more collimated, biasing this angular distribution to smaller values. This is

demonstrated in the leftmost plots of figure 11.12, where we see that an increasing

number of jets (indicative of increasing Higgs pT ) implies smaller values of ∆φ``, on

average.
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Figure 11.12: Distribution of ∆φ`` for signal and background events in the di-lepton
final state. (Top) Simulated signal events with MH = 126 GeV. (Bottom) Non-
resonant SM WW events. (Left) ∆φ`` evaluated in the laboratory frame. (Right)
∆φ`` evaluated in the R-frame.

To correct for this effect, we find that we can evaluate angles like ∆φ`` in the
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R-frame rather than the lab frame, effectively removing the dependence on the pT of

the WW system. This is demonstrated in the rightmost plots of figure 11.12. ∆φ`` is

not the only angle that can be calculated in the R-frame. Another interesting variable

is the azimuthal angle between direction of the transverse boost from the lab frame

to the R-frame, ~βLRT , and the direction of the di-lepton system (~̀ R
1 + ~̀ R

2 ). Since

~βLRT points in the direction of the Higgs candidate momentum, we denote this angle

∆φ``, ~H . This second angle is particularly useful for discriminating between signal

events and Z(``)+jets, demonstrated by the 2D ∆φ`` vs. ∆φ``, ~H distributions shown

in figure 11.13. The reason for this strong discrimination is the fact that, for Z(``)
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Figure 11.13: Two-dimensional distributions of ∆φ`` and ∆φ``, ~H evaluated in the R-
frame for simulated events in the di-lepton final state. (Left) H → WW events with
MH = 126. (center) Non-resonant SM WW production. (Right) Z(``)+jets events.

events, both leptons come from the same decay rather than separate decay chains.

This means that the R-frame will generally be a good approximation to the Z rest

frame, where the two leptons will be back to back with ∆φ`` equal to π. This feature

is demonstrated in figure 11.13. A small fraction of the time, fake missing transverse

energy can be measured erroneously in events with Z bosons, resulting in a topology

faking that of the signal. In these cases, the pT of the CM system will be incorrectly

assigned from the anomalous missing transverse momentum and, as a result, so will

the R-frame. For these events, the boost relating the incorrect R-frame to the actual

CM will generally point in the direction of the mis-measured transverse momentum,

as will (~̀ R
1 + ~̀ R

2 ) from the R-frame boost. The result is that the angle ∆φ``, ~H is

forced to be close to zero when ∆φ`` deviates from π for events where two leptons are

back to back in the true CM frame, as we observe in figure 11.13.
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Using the interplay between ∆φ`` and ∆φ``, ~H to reject specific types of back-

grounds is not exclusive to this di-lepton case. In final states with jets, such as

those studied in the searches for SUSY described in Chapters 9 and 10, events with

QCD multi-jet production behave similarly to the Z(``) background events here. SM

backgrounds without high momentum weakly interacting particles in the final state

can mimic signals with missing transverse momentum through mis-measurements of

particles and limited detector acceptance. The angles ∆φ`` and ∆φ``, ~H can be used

to suppress this entire class of backgrounds, exploiting the relationship between the

R-frame and the true CM frame when these mis-measurements occur.

In general, we observe that variables like ∆φ`` and ∆φ``, ~H can be evaluated in

the R-frame independently of the scale MpT−corr
R , in that variations of their values

around the those evaluated in the true CM frame are uncorrelated with variations

of MpT−corr
R around the true characteristic scale. This makes an approach based on

the razor variables well suited to cases where we need to identify both the scale an

angular properties of events, such as for quantum number measurements of the newly

discovered boson resonance in this final state. Which variables are most useful to

calculate in the R-frame for this case are the subject of future studies.



356

11.3 Perfect Pairs: Symmetric Two Step Decays

In the previous two sections we have seen that we can extract the characteristic mass

scale from events where massive particles are pair produced and each decays to visible

and invisible particles. This topology manifests itself in a general class of new physics

scenarios and also in the SM, through processes like H → WW → (`ν)(`ν) and top

quark pair production. The latter case is particularly interesting. When top quarks

are pair produced they decay to a b quark and W bosons (no other decays have

been observed to date). If the two W bosons from the tops each decay leptonically as

W → `ν then these events result in a striking topology, shown in figure 11.14. In each

event, there are two two-body decays in each decay chain, each with identical particle

content. Each two body decay produces a visible, detectable particle and the particles

coming from the first decays are distinguishable by type from those coming from the

second. As was the case for the simple one step decays of the previous sections, we

will see that the visible particles in these events contain information about the mass

splitting between the other particles participating in their decay, or the characteristic

scale of each two-body decay. We denote the class of events described in figure 11.14

the perfect pairs topology, such that all of the particles in this final state can have

nonzero masses (more general than just top pair production), requiring only that the

decay chains are symmetric in particle content. In the following section we derive razor

kinematic variables for perfect pairs events, resulting in independent estimators MR1

and MR2 of the two characteristic scales in these events and the variable γR, which

scales with the true value of γCM =
√
ŝ/2MT . The variables we propose are not only

useful for studying tt̄ production, but also a wide class of signal topologies including

models with new symmetry partners of top quarks, like stops in SUSY. We examine

the properties of these variables in SUSY-like events with stop pair production with

decays to b-quarks and charginos.
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Figure 11.14: The canonical perfect pairs topology. Two massive particles, Ti, are
pair produced and each decays as Ti → BiWi, where the particles Bi are reconstructed
in the detector. The massive particles Wi decay as Wi → Liχi, where the particles
Li are reconstructed in the detector while the particles χi are weakly interacting and
escape detection.

11.3.1 Derivation of Perfect Pairs Razor Variables

For convenience, we will adopt the naming conventions of di-leptonic tt̄ for the par-

ticles in the general perfect pairs topology. In this case two top quarks (T1 and T2),

with equal mass MT , are produced. Each top quark then decays to a massive W

boson, W1 and W2 respectively, and a b-quark, Bi. Subsequently, each W boson then

decays to a lepton, LI , and a weakly interacting neutrino, Ni. For the derivation

of general perfect pairs variables we allow each particle in the final state to have

nontrivial masses (despite our naming conventions).

We denote the center of mass frame of the T1T2 system the CM-frame, the rest

frames of the top quarks the Ti frames and the rest frames of the W bosons the Wi

frames. The four vectors of the b-quarks are denoted by bi, with three momenta~bi and

energy Bi. Similarly, we denote the four vectors of the leptons (neutrinos) `i(νi), with

three momenta ~̀i(~νi) and energy Li(Ni). Throughout this discussion the superscripts

of these four and three vectors will indicate which reference frame the object is in. For

example, LW1 refers to the energy of lepton 1 in its respective W1-frame. There will

be no instances of any leptons’ or b-quarks’ energy or momentum being evaluated in

the T or W frame of the top or W that it did not come from (no B1 in the T2-frame,
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etc.). The b and lepton four vectors satisfy the following relations

b2
i = MB , `2

i = ML , ν2
i = Mχ , (11.27)

(νi + li)
2 = MW , (bi + νi + li)

2 = MT .

The
√
ŝ for this process is defined as (bi + `i + νi)

2 = ŝ = 4γCMM
2
T , such that γCM

indicates how far off-threshold the tops are produced. The boost βCM is defined such

that γ2 = 1/(1 − β2
CM) and ~βCM indicates the direction each top is moving in the

CM frame (T1 is moving in direction ~βCM while T2 is moving in direction −~β). Let

us also define two masses, mi, such that

m2
i = (bi + `i)

2 . (11.28)

The characteristic scales in perfect pairs events that we would like to measure are

related to the momenta of the visible particles, evaluated in rest frames of the particles

that produced them. The reference frames relevant to the perfect pairs topology are

described in figure 11.15. The decay chain symmetry, and the fact that each of the

decays is a two-body, monochromatic decay will lead to two important constraints.

Firstly, in its respective Ti-frame each b-quark is recoiling against a W boson. Since

the T mass and W mass are fixed, we know that

BT
1 = BT

2 =
M2

T −M2
W +M2

B

2MT

. (11.29)

Similarly

LW1 = LW2 =
M2

W −M2
χ +M2

L

2MW

. (11.30)

Hence, if we were able to find the Ti and Wi rest frames, event by event, the mag-

nitude of the b-quark and lepton three momenta in these frame would be equal to

these mass differences. In order to find approximations of these reference frames,

we will attempt to reconstruct the series of boosts that relate the reference frames

shown in figure 11.15, using the principles of the general razor approach described in
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section 11.1.

~βT

βz

lab frame

√
ŝ

−~βCM ~βCM

CM frame

S2 S1

√
ŝ

~P∆1

−~P∆1

Ti rest frame

Bi

Wi

Ti

~P∆2

−~P∆2

Wi rest frame

Li

χi

Wi

Figure 11.15: The six reference frames appearing in the perfect pairs topology. (Far
left) In the lab frame, the CM system is traveling with a longitudinal velocity βz and

transverse velocity ~βT . (Center left) In the CM frame, the two particles T1 and T2 are
traveling with equal and opposite velocities βCM , with

√
ŝ representing the T1 + T2

CM object. (Center right) In each of the respective Ti rest frames the particles Wi

and Bi are traveling with equal and opposite momentum, with the magnitude of their
momentum set by the particle mass differences. (Far right) In the Wi rest frames the
lepton and neutrino recoil against each other with a second characteristic momentum.

We begin the derivation in the CM frame, and assume that we have measured

the three momenta ~b CM
i and ~l CMi , along with these particles’ masses. We know that

each Ti frame is traveling with equal and opposite velocity in this frame, so one way

to view the problem is to determine the asymmetric boost, ~βR, that will move the

bCMi into their respective Ti frames. Exploiting the symmetry of the decay chains, we

also have a constraint for one of the three degrees of freedom of ~βR,

BT
1 = BT

2 ⇒ γR(BCM
1 − ~βR ·~bCM1 ) = γR(BCM

2 + ~βR ·~bCM2 ) (11.31)

⇒ ~βR · (~bCM1 +~bCM2 ) = BCM
1 −BCM

2 .

With the value of ~βR parallel to (~bCM1 +~bCM2 ) specified, what remains is to assign values

to the other two d.o.f.. We postpone this for the moment and leave ~βR unspecified.

Instead, we embark on a short Gedankenexperiment to the approximations of the Ti

frames that our unknown ~βR will take us to. Let us denote these reference frames the

TRi frames, for the rough-approximation T frames, noting that BTR

1 = BTR

2 ≡ BTR is

guaranteed from the part of ~βR that we do know.

Now, if ~βR = ~βCM , then each b quark should be traveling with equal and opposite
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momenta to its respective W in its T frame. This implies that we know the direc-

tion of the boost that will take the leptons from their T frames to their W frames.

Specifically, denoting the boosts that take `Ti to their respective W frames as ~ξi we

can express them as

Γi =

√
1

1− |~ξi|2
, Γ1 = Γ2 ≡ Γ , (11.32)

LWi = Γ(LTi − ~ξi · `Ti ) , ~ξi = −
~bTi√

(BT )2 +M2
W

.

Symmetry requires that LW1 = LW2 , which gives us the following constraint

LW1 = LW2 ⇒ Γ(LTR1 − ~ξ1 · ~̀ TR
1 ) = Γ(LTR2 − ~ξ2 · ~̀ TR

2 ) (11.33)

⇒ LTR1 − LTR2 = ~ξ1 · ~̀ TR
1 − ~ξ2 · ~̀ TR

2 =
~b TR

2 · ~̀ TR
2 −~b TR

1 · ~̀ TR
1√

(BTR)2 +M2
W

⇒
√

(BTR)2 +M2
W (LTR1 − LTR2 ) =

m2
1 −m2

2

2
+ LTR2 BTR − LTR1 BTR

⇒ m2
1 −m2

2

2
= (BTR +

√
(BTR)2 +M2

W )(LTR1 − LTR2 ) = MT (LTR1 − LTR2 )

⇒ MT =
m2

1 −m2
2

2(LTR1 − LTR2 )
.

Having peered down the road assuming we knew the other two d.o.f. of ~βR we see

that we could calculate BTR , LW , γR, MT , and, subsequently from the relations we

already know, the masses MW and Mχ – all of the unknown parameters in this event.

To understand how to assign values to these d.o.f. we first expand ~βR in a basis of

orthonormal vectors v̂i defined in figure 11.16.

In this basis, ~βR can be expressed as

~βR = β1v̂1 + β2v̂2 + β3v̂3 , (11.34)

with β1 =
BCM1 −BCM2

|~b CM
1 +~b CM

2 | following from equation (11.32). To assign β2 and β3 we appeal

to a slightly different problem. If we view each pair (Li + Bi) as a single particle,

then the perfect pairs event can be interpreted as the canonical razor topology of
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v̂2

(~b1 + ~̀
1)⊥v̂1

v̂3

(~b2 + ~̀
2)⊥v̂1

v̂1

v̂1 ≡ ~b1+~b2
|~b1+~qb|

v̂2 ≡ (~b1+~̀1)⊥v̂1−(~b2+~̀2)⊥v̂1
|(~b1+~̀1)⊥v̂1−(~b2+~̀2)⊥v̂1 |

v̂3 ≡ v̂2 × v̂1

Figure 11.16: The momenta of the b-quarks and leptons in the CM frame. The
diagram shows the plane perpendicular to (~b1+~b2). An orthonormal basis v̂i is defined
using the b’s and leptons’ momenta. The subscript ⊥ v̂1 indicates the component of
a vector perpendicular to v̂1.

section 11.1, with two massive tops decaying to a a visible particle (Li + Bi) and

an invisible neutrino. Even though our reinterpreted event lacks the decay chain

symmetry usually required, there is a different property we would like to borrow

from the canonical razor derivation. We observe that if we want γR to scale with

the true value of γCM then we should choose β2 and β3 which minimize the quantity

(BTR
1 +BTR

2 +LTR1 +LTR2 ), corresponding to our estimator for the razor characteristic

scale of the asymmetric simplified toplology. Requiring

∂(BTR
1 +BTR

2 + LTR1 + LTR2 )

∂β2

=
∂(BTR

1 +BTR
2 + LTR1 + LTR2 )

∂β3

= 0 , (11.35)

results in β3 = 0 and β2 such that βR expressed as

~βR =
BCM

1 −BCM
2

|~b CM
1 +~b CM

2 |
v̂1 +

[(~b CM
1 + ~̀ CM

1 )− (~b CM
2 + ~̀ CM

2 )] · v̂2

BCM
1 +BCM

2 + LCM1 + LCM2

v̂2 . (11.36)

To calculate our approximation of the boost ~βL which relates the lab frame and the

CM frame we reuse another concept from the general razor derivation. By interpreting

two times the sum of the b-quark and lepton energies in the CM frame as the effective
√
ŝ for the event,

√
ŝR, we can solve for the boosts βLRz and ~βLRz which move from
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the lab frame along the beam axis and in the transverse direction, respectively, to

our approximation of the CM frame, denoted the R frame. For perfect pairs events,

we find that these boosts can be expressed as

βLRz =
bl1z + bl2z + `l1z + `l2z
Bl

1 +Bl
2 + Ll1 + Ll2

, ~βLRT =
~PCM
T√

|~PCM
T |2 + ŝR

, (11.37)

where ~PCM
T = ~b l

1T +~b l
2T + ~̀ l

1T + ~̀ l
2T + ~M . Defining

∑
E = Bl

1 +Bl
2 + Ll1 + Ll2 ,

∑
~P = ~b l

1 +~b l
2 + ~̀ l

1 + ~̀ l
2 , (11.38)

ŝR is given by

ŝR = 2
(∑

E
)2

− 2~PCM ·
(∑

~P
)

(11.39)

± 2
(∑

E
)√(∑

E
)2

+ |~PCM |2 − 2~PCM ·
(∑

~P
)
.

We can now summarize the complete definitions of our kinematic variables. The

R frame is now defined as the reference frame resulting from the longitudinal boost

βLRz from the lab frame followed by the transverse boost ~βLRT . The TR frames are

defined as those resulting from an asymmetric boost βR applied to the b-quarks and

leptons in the R frame, given by

~βR =
BR

1 −BR
2

|~b R
1 +~b R

2 |
v̂1 +

[(~b R
1 + ~̀ R

1 )− (~b R
2 + ~̀ R

2 )] · v̂2

BR
1 +BR

2 + LR1 + LR2
v̂2 . (11.40)

The energies of the visible particles in their respective TR frames are defined as

BTR
1 = γR(BR

1 − ~βR ·~b R
1 ) , BTR

2 = γR(BR
2 + ~βR ·~b R

2 ) , (11.41)

LTR1 = γR(LR1 − ~βR · ~̀ R
1 ) , LTR2 = γR(LR2 + ~βR · ~̀ R

2 ) .

The first characteristic scale variable, MR1, is designed to be sensitive to the mass
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splitting of the first decay in each chain, and is equal to

MR1 = BTR
1 +BTR

2 = 2BTR ∼M∆1 =
M2

T −M2
W +M2

B

MT

. (11.42)

Our estimates of the top and W masses, MR
T and MR

W , are given by

MR
T =

m2
1 −m2

2

2(LTR1 − LTR2 )
, MR

W =
√

(MR
T )2 +M2

B − 2MR
T B

TR . (11.43)

In order to calculate the second scale variable, MR2, we must evaluate the lepton

energies in our approximations of the W rest frames, denoted the WR frames. MR2

can be expressed as

MR2 = LWR
1 + LWR

2 = 2LWR (11.44)

=
1

2MW

[
(m2

1 −m2
2)(LTR1 + LTR2 )

LTR1 − LTR2

+M2
B +M2

L −m2
1 −m2

2

]

∼ M∆2 =
M2

W −M2
χ +M2

L

MW

.

In the following sections we will study the phenomenology of the variables MR1,

MR2 and γR in perfect pairs events.

11.3.2 The tt̄ Pole

As a first test of the variables MR1, MR2 and γR we examine their behavior in events

with di-leptonic tt̄ decays. The toy event simulation described in section 11.1 is

used to generate sample tt̄ events, using the SM values for the masses of each of the

particles in the final state and flat matrix elements for each of the decays (tt̄ spin

correlations are neglected). We also compare the results from this toy simulation to

events simulated with the full CMS detector. For the latter, we select simulated tt̄

events with two reconstructed leptons with pT > 20 GeV/c and lepton identification

identical to that used in the CMS SUSY search described in Chapter 10. We also use

the b-tagging discriminant from that search to identify our two b-quark candidates in
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these samples. Selected events are required to have at least two reconstructed jets

with pT > 30 GeV/c. We choose our two b-jets from the collection of jets satisfying

this requirement by picking the two with the largest values of the b-tag discriminant.

In both our toy simulation and CMS simulated events there is an ambiguity as to

which b-jet to pair with each lepton. We choose the combination that minimizes

m2
1 + m2

2, with these masses defined in equation (11.28). As βCM increases, this

choice will result in the correct pairing a larger fraction of the time.

In figure 11.17 we compare the distributions forMR1 andMR2 for tt̄ events from the

toy simulation and CMS simulation. In both cases we observe the expected peaking

behavior at the characteristic scales M∆1 =
M2
T−M2

W

MT
and M∆2 =

M2
W−M2

ν

MW
∼MW . The

MR peak is biased slightly low in CMS simulated events, most likely due to imperfect

jet energy scale calibrations for b-tagged jets. The resolution of both peaks is quite

similar between the two simulations.
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Figure 11.17: Distributions of MR1 and MR2 for simulated di-leptonic tt̄ events. (Left)
A toy simulation with only kinematic effects taken into account. (Right) Events
produced with CMS full simulation.

We observe that a shortcoming to this perfect pairs razor approach is that MR2 is

not always well-defined. The fraction of the time this occurs can vary between 30%

and 60%, depending and the kinematics of the event, with the fraction increasing for

larger γCM . MR1 is well defined for almost all events (. 2% ill-defined). An analysis

based on these variables would most likely require different treatments of events with

and without well-defined MR2.
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Figure 11.18: Distributions of MR1/M∆1 vs. MR2/M∆2 for simulated di-leptonic
tt̄ events. (Left) A toy simulation with only kinematic effects taken into account.
(Right) Events produced with CMS full simulation.

The next property to understand is the correlation between the calculated values

of MR1 and MR2. We see in figure 11.18 that the two quantities are nearly completely

uncorrelated, resulting in a prominent two dimensional peak. Additionally, we observe

that our simple toy simulation successfully reproduces the qualitative features of the

fully simulated events. This is not surprising, since the intrinsic resolution of these

peaks are larger than the resolution of the measured particles’ momentum used to

calculate them. As a result, the overall performance is dictated predominantly by

just the underlying kinematics. This gives us some confidence in the predictions of

the toy simulation when we systematically vary the masses in the following section.

The last property we would like to examine in tt̄ events is the scaling of γR with

the true value of γCM . If the two top quarks are produced in the decay of a heavy

resonance, G, then γCM will have a fixed value at a scale related to the top and G

mass splitting, which we would like to be sensitive to. We consider a scenario where

two tops are produced in the decay of a particle, G, with mass MG is chosen such that

γCM = 3. The distributions of MR1/M∆1, MR2/M∆2 and γR/γCM for these events are

shown in figure 11.19. We observe that we can resolve all three quantities in nearly

uncorrelated independent measurements with relatively good resolution. The result

is a three-dimensional peak in these three variables, which would be a striking signal
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Figure 11.19: Distributions of MR1/M∆1, MR2/M∆2 and γR/γCM for simulated di-
leptonic tt̄ events produced through a heavy resonance G with MG/2MT = γCM = 3.
(Upper left) MR1/M∆1 vs. γR/γCM . (Upper right) MR2/M∆2 vs. γR/γCM . (Bottom)
MR1/M∆1 vs. MR2/M∆2.
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if events of this type appear in data.

11.3.3 Perfect Pairs for Signal Events

In models that attempt to address the hierarchy problem there appear many new

particle production possibilities that satisfy the perfect pairs topology. One example

is the pair production of SUSY stops which decay to a chargino, snuetrino and neu-

tralino, illustrated in figure 11.20. Each of the decays is two-body, with the b-quarks

and leptons produced in the first and second decay steps, respectively, just as for

di-leptonic tt̄ events. In this case both of the sneutrino decay products are weakly

interacting and escape detection. As a result, the sneutrino plays the role of a heavy

neutrino in the perfect pairs topology.

t̃b

t̃a

χ̃cb=±b

χ̃ca=±
a

Ñb

Ña

p

p

Bb

Nb

χ̃0
b

Lcbb

Lcaa

χ̃0
a

Na

Ba

Figure 11.20: A perfect pair signal topology. Here, a pair of stops are pair produced
(labelled a and b to avoid confusion with the different stop mass eignenstates often
denoted as 1 and 2) and undergo two-body decays to b-quarks and charginos. The
charginos then decay to leptons and sneutrinos. There are two additional particles
in the final state from each subsequent sneutrino decay (a neutralino and neutrino)
which are both weakly interacting. As a result, the sneutrinos play the role of the
neutrinos in the analogous perfect pairs case for tt̄ events.

For these di-stop events the two characteristic scales which we are sensitive to are

M∆1 =
M2

t̃
−M2

χ̃+

Mt̃

, M∆2 =
M2

χ̃+ −M2
Ñ

Mχ̃+

. (11.45)

Whether or not an analysis using these variables would be sensitive to a particular

signal model depends on how different the scales in the model’s mass spectrum are
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from those of the SM and how well we are able to resolve those scales. In the case

of di-lepton and di-b-tagged jet final states, this is reduced to a question of whether

it is possible to resolve the peaking signal in the presence of the multidimensional

top peak. In this section we examine a wide range of perfect pairs topologies by

systematically varying the parameter γCM and the mass spectrum, observing how

well the razor variables can resolve the quantities that they approximate.

We first test the dependence of the variables MR1 and MR2 on γCM , shown in

figure 11.21. The variables are able to successfully resolve the correct scales up to

large values of γCM , with the performance of the variables degrading with increasing

γCM . We find that, as γCM gets bigger, the information about the characteristic scales

is progressively washed-out.
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Figure 11.21: (Left) Distribution of MR1/M∆1 as a function of γCM . (Right) Distri-
bution of MR2/M∆2 as a function of γCM . Events are generated from a toy simulation
with MT = 400 GeV, MW = 200 GeV and Mχ = MB = ML = 0.

Next, we test what happens as each of the two mass splittings becomes large or

small relative to the other. With MT and Mχ masses fixed, we vary MW between

the two values. The resulting distributions for MR1 are shown in figure 11.22. We

consider two cases: one where Mχ = 0 and the other with Mχ = 200 GeV = MT/2.

We observe that for small first mass splitting (MT -MW ) the two cases behave almost

identically. MR1 is able to successfully resolve the correct scale unless the mass

splitting approaches zero and the correspondence with M∆1 is lost. When this first
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mass splitting is large, the two cases behave slightly differently, with the nonzero Mχ

case resulting in a distortion of MR1 that does not appear when Mχ = 0.
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Figure 11.22: Distribution of MR1/M∆1 as a function of MW for two different sce-
narios. (Left) Mχ = 0. (Right) Mχ = 200 GeV and other masses fixed. Events are
generated from a toy simulation with MT = 400 GeV and MB = ML = 0.

Performing the same exercise for MR2, we see in figure 11.23 that the two Mχ

cases yield effectively identical results when varying MW and the mass splittings.

When the second mass splitting (MW − Mχ) is large MR2 is able to identify the

scale M∆2, peaking at the right value. As the second mass splitting gets smaller

(and the leptons get softer relative to the b-quarks) information about this scale gets

increasingly worse, similarly to MR1 and the first mass splitting. We see that the

behavior is as expected: For the majority of possible scenarios for these masses, the

variables MR1 and MR2 are able to resolve the correct characteristic scales. Naturally,

their ability to do so degrades as the corresponding mass splittings get smaller.

Finally, we evaluate our procedure for correcting for nonzero pCMT . In figure 11.24

we compare the distributions of MR1 and MR2 as a function of pCMT , with and without

pT corrections using the transverse boost ~βLRT . We find that the procedure works as

designed. Rather than being washed-out with increasing pCMT as is the case without

a pT correction, MR1 and MR2 are nearly independent of pCMT .

The perfect pairs razor variables are a potentially powerful tool for studying

events consistent with this topology for a wide range of mass splittings and kine-



370

2∆ / MR2M

00.511.522.5

χ
 - M

T
M

χ
 - M

W
M

0.2
0.4

0.6
0.8

1

a.
u.

 = 400 GeVTM
 = 0χ∼M

Toy simulation

2∆ / M
R2M

00.511.522.5

χ
 - M

T
M

χ
 - M

W
M

0.2
0.4

0.6
0.8

1

a.
u.

 = 400 GeVTM

 = 200 GeVχ∼M
Toy simulation

Figure 11.23: Distribution of MR2/M∆2 as a function of MW for two different sce-
narios. (Left) Mχ = 0. (Right) Mχ = 200 GeV and other masses fixed. Events are
generated from a toy simulation with MT = 400 GeV and MB = ML = 0.
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Figure 11.24: (Top) Distribution of MR1 as a function of the transverse momenta of
the CM frame, pCMT . (Bottom) MR2 as a function of pCMT . (Left) The transverse boost
~βLRT is not applied to correct for nonzero pT . (Right) ~βLRT pT corrections are applied.
Events are generated with MT = 400 GeV, MW = 200 GeV and Mχ = MB = ML = 0.
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matic regimes. In the following section we will see that they can also be useful for

cases which aren’t perfect pairs.

11.3.4 Almost Perfect Pairs

In addition to the many possible signal processes that satisfy the perfect pair symme-

try requirements there is a collection that violates one or more symmetry conditions

but for which the perfect pairs razor variables can still be useful. An example is

t̃ → bχ̃+ pair production, where the charginos decay to W bosons and neutralinos,

illustrated in figure 11.25. If the W s are on-shell and decay hadronically, the dijet

W resonances can be treated as single objects in a perfect pairs approach. If the W s

both decay leptonically the presence of two extra neutrinos in the final state breaks

the perfect pairs symmetry. The lepton will no longer carry exactly half of the mo-

mentum away from the chargino decay. Furthermore, if the chargino-neutralino mass

splitting is smaller than MW the W will be produced off-shell, resulting in potentially

different masses between the two decay chains. In this section, we study the behavior

of the perfect pair razor variables for these nonperfect cases.

t̃b

t̃a

χ̃cb=±b

χ̃ca=±
a

W cb
b

W ca
a

p

p

Bb

Lcbb

Nb

χ̃0
b

χ̃0
a

Na

Lcaa

Ba

Figure 11.25: An almost perfect pair signal topology. Here, a pair of stops are pair
produced and undergo two-body decays to b-quarks and charginos. The charginos
then decay to W bosons and neutralinos. Leptons and neutrinos are produced in
the decay of the W bosons. If the χ̃+ − χ̃0 mass splitting is not sufficiently large
to accommodate an on-shell W they can be produced off-shell, with masses varying
event by event. The presence of two extra weakly interacting particles breaks the
perfect pairs symmetry.
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We consider a toy simulation of these t̃ pair production events, adapted to ac-

count for off-shell decays of W s. In these cases, each W mass is independently sam-

pled from a nontrivial distribution modeling MW∗ in the kinematically allowed phase

space afforded by the chargino-neutralino mass splitting. Results using several differ-

ent probability distribution functions for MW∗ are compared, with the distributions

considered shown in figure 11.27. We observe no perceivable differences between the

behavior of the perfect pairs razor variables when varying the MW∗ distribution. In

fact, we see almost identical behavior between off-shell and on-shell W cases in that

the variables are sensitive to effective scales, independent of the W mass.

 [GeV]W*M

0 5 10 15 20 25 30 35 40 45 50

W
*

dN
/d

M

Figure 11.26: Distributions of the off-shell W mass for events with a chargino-
neutralino mass splitting of 50 GeV. Three different types of probability distribution
functions are considered for the off-shell W mass, represented by the different col-
ored curves. We observe that the behavior of the perfect pairs razor variables are
indistinguishable between the three distributions for MW∗.

For the case we are discussing, we define effective mass scales M∆1 and M eff
∆2 in

terms of the SUSY particle masses

M∆1 =
M2

t̃
−M2

χ̃+

Mt̃

, M eff
∆2 =

M2
χ̃+ −M2

χ̃0

2Mχ̃+

, (11.46)

with the scale of the second mass splitting taking one half the value for the canonical

perfect pairs case. The reason is that the momentum from the chargino decay is

shared evenly between the W s and neutralinos. This momentum, along with energy

from the W mass, is then split further between the lepton and neutrino.
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The distributions of γR, MR1 and MR2 are evaluated while varying γCM for a

benchmark signal case, shown in figure 11.21. We observe that, even at large γCM ,

each of the variables is sensitive to its corresponding effective scale. MR1 has a

kinematic edge at M∆1 while MR2 peaks at M eff
∆2 , both with better resolution of their

respective scales at smaller γCM . Similarly, the γR distribution scales with γCM , with

an increasing bias at larger values.
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Figure 11.27: (Left) Distribution of MR1/M∆1 as a function of γCM . (Right) Distribu-
tion of MR2/M

eff
∆2 as a function of γCM . Events are generated from a toy simulation

with Mt̃ = 400 GeV, Mχ̃+ = 150 GeV and Mχ̃0 = 100 GeV.

In the distributions of MR1 shown in figure 11.28 the value of the chargino mass

is varied while keeping the other masses fixed, effectively probing the whole range of

effective mass splitting for the decays in these events. The variables behave qualita-

tively in the same way for these events as for perfect pair topologies under the same

variation. The MR1 edge at M∆1 persists for the whole range of mass splittings, losing

resolution when the first mass splitting (t̃− χ̃+) approaches zero. In figure 11.29 we

observe that MR2 behaves similarly, losing focus of the effective scale M eff
∆2 when the
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Figure 11.28: Distribution of MR1/M∆1 as a function of Mχ̃+ for two different sce-
narios. (Left) Mχ̃0 = 0. (Right) Mχ̃0 = 200 GeV and other masses fixed. Events are
generated from a toy simulation with Mt̃ = 400 GeV.

second mass splitting (χ̃+− χ̃0) gets small. We also see that nonzero M0
χ̃ can change

M eff
∆2 for the peak position of MR2 and also induce small effects in MR1 at small

second mass splittings.
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Figure 11.29: Distribution of MR2/M
eff
∆1 as a function of Mχ̃+ for two different sce-

narios. (Left) Mχ̃0 = 0. (Right) Mχ̃0 = 200 GeV and other masses fixed. Events are
generated from a toy simulation with Mt̃ = 400 GeV.

In summary, we see that perfect pairs for nonperfect events can still be useful.

Even though the chargino decays from our example nonperfect case are effectively

three body decays to leptons and a weakly interacting system of particles, we find

that by imposing the perfect-pair symmetry conditions causes the variations in decays

to decrease in magnitude by effectively averaging the scale of the two decay chains.

As a result, these events will peak in the three-dimensional MR1, MR2, γR space
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of observables with its own characteristic scales, albeit with worse resolution than

perfect pair events. Regardless, gaining sensitivity to these scales could facilitate the

discovery of these new phenomena, if they exist and if our lenses are sharp enough.
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Appendix A

Chapter 7 Appendix: Spinning the
Higgs

A.1 Simulation, Detector Modeling and Selection

A.1.1 Event Generation

The knowledge of the four-momenta of the leptons fully specifies the information

needed in this analysis. We generate the four-momenta of the leptons from the five-

or six-dimensional probability density functions (pdfs) of

~X ≡ {~ω, ~Ω} forZZ ,

~X ≡ {~ω, ~Ω, MZ∗} for ZZ∗ , (A.1)

where ~Ω, ~ω are given in equation (7.4). The ~X quantities are generated in the rest

frame of the decaying resonance. The muons are then boosted to the laboratory

frame, and the detector effects (acceptance, efficiency and resolution) are applied to

the boosted momenta. We use the azimuthal symmetry of the LHC detectors to

reduce the remaining kinematic degrees of freedom to the knowledge of the pT , η

and the invariant mass m4µ of the 4µ system. The pT , η for the signal is taken from

a two-dimensional pdf generated using MC@NLO [229]. We consider proton-proton

collisions at
√
s=10 TeV, and we model the parton distribution functions (PDFs)
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using CTEQ5L [230].

In this analysis we do not assume a specific signal production mechanism and cross

section, instead relying on the discrimination provided by the angular distributions

of the leptons in the final state. For the SM ZZ background the pT , η and m4µ are

taken from a three-dimensional pdf generated using the PYTHIA [213] leading-order

MC generator. The momenta of the four muons in the rest frame of the ZZ(∗) system

as a function of m4µ are generated according to the theoretical distributions.
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Figure A.1: Distribution of the dimuon invariant mass for a sample of signal H →
ZZ events, generated using our very-fast muon simulation. The parameters of the
superimposed fit are extracted from [231].

A.1.2 Detector Emulation and Event Selection

Muon reconstruction efficiency and resolution are parameterized as a function of the

muon pT and η according to [232], where the muon reconstruction efficiency is close

to 100% for muons with pT ≥ 10 GeV/c and |η| ≤ 2.3, corresponding to the event

selection in our analysis. The reconstruction efficiency is applied through a hit-or-miss

technique. For muon candidates accepted by the efficiency filter, the reconstructed

momentum is determined by applying Gaussian smearing functions to the true pT , η

and φ with pT - and η-dependent resolutions. We verified the goodness of our very-

fast muon simulation by comparing the parameters of the fit of the Z invariant mass

distribution obtained in our analysis, see figure A.1, with the corresponding ones from

a published full-simulation analysis [231].

A number of detector related effects can modify the ~X observables’ pdfs. The

resolution of the observables used in the analysis is shown in figure A.2 and is found
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to be small independent of the HLL resonance mass and quantum numbers. The

systematic bias in the reconstruction of the same variables is shown in figure A.3

and is found to be negligible. This shows that the sculpting of the observables’

pdfs is not a result of reconstruction resolution or bias. Rather, it depends on the

simulated kinematics of the HLL resonance, including its mass, and on the particular

model considered (0+, 0−, etc.). Specifically, the overall phase space acceptance,

implemented in the signal selection by means of the pT and η requirements, produces

the largest effects on the observables. This is shown in figure A.4 for a resonance of

mass 145 GeV/c2 generated with no explicit angular correlations. Adding the angular

correlations can enhance or reduce the overall selection efficiency depending on the
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Figure A.2: Reconstruction resolution for the angular variables of ~X shown here for a
resonance with mass 145 GeV/c2. The cos θ2 and cos θ1 distributions are very similar
in this case. Only events surviving the signal selection are included. All distributions
are normalized to unit integral.

details of the multidimensional pdf. Our selection is 60% (74%) efficient for a 0+

resonance of mass 200 GeV/c2 (350 GeV/c2) as shown in figure A.5. The same figure

demonstrates that the efficiency has a nontrivial dependence on the nature of the

spin correlations. Specifically, for a 0− resonance of 200 GeV/c2 (350 GeV/c2) the

efficiency is 60% (69%). With an absence of explicit spin correlations the efficiency

for a 350 GeV/c2 resonance is 71%.

We find that changes in the ~X distributions are strongly correlated with the

kinematics of the off-shell Z, e.g., for cos θ2 the largest inefficiencies correspond to

the kinematic configurations where at least one of the muons is soft. When the

correlations between the variables ~ω and ~Ω appear explicitly in the differential cross
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Figure A.3: Distributions showing systematic biases for a subset of the reconstructed
variables ~X for a resonance with mass 145 GeV/c2. Only events that survive the
signal selection are included. All biases are negligible.

sections, as is the case for J=1±, the phase space acceptance effects are amplified.

The shapes of the reconstructed ~ω and ~Ω distributions depend on the phase space

acceptance both for electron and muon final states (H → ZZ → 2e2µ or 4e). Fig-

ure A.6 shows the relevant kinematic distributions. All the results concerning model

discrimination, as a function of the number of observed signal events, will be nearly

identical when the additional final states are included (2e2µ, 4e), especially when

the off-shell Z mass is not used as an observable. This is not necessarily the case for

results concerning the discovery of a resonance in these final states with respect to

the background-only hypothesis, since different backgrounds need to be considered

for electron and muon final states.

A.1.3 Fit Definition and Signal Extraction

The H → ZZ signal events can be discriminated from SM backgrounds using an

extended and unbinned ML fit. Since there is no resonant 4µ background in the

SM, the fit can use as a discriminating variable the 4µ mass distribution. In the

presence of a sizable background due to fake Z candidates (such as top decays) the 2µ

mass distributions can be included in the likelihood. Since this is not a conceptually

different situation, we ignore this possibility and assume for simplicity that the only

relevant background is given by events with two real Z candidates. We write the
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Figure A.4: The variables ~X used in this analysis for a 145 GeV/c2 resonance. The
off-shell MZ∗ is required to lie a window between 20 and 50 GeV/c2. The shaded
histograms are the 1D distributions using a constant matrix element (i.e., no angu-
lar correlations included). The overlaid histograms show the same distributions for
reconstructed events passing the pT and η signal selection after the detector parame-
terization. All distributions are normalized to unit integral.

likelihood function as:

L =
1

N !
exp

(
−
∑

j

Nj

)
(A.2)

N∏

i=1

(
NSPS[mi

4µ] +NBPB[mi
4µ]

)
,

where Nj (j=S,B) represents the yield of each component, mi
4µ is the 4µ candidate

mass for the event i, and PS[m] (PB[m]) is the signal (background) distribution for the

variable m. The pdfs for the signal and background components are described using

the template distributions from the simulation, as shown in figure A.7 for mH=250

GeV/c2. This fit configuration is appropriate for the HLL characterization.
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Figure A.5: The analysis efficiency for 0+, 0− as a function of the resonance mass.
The case with no correlations is also shown for comparison.
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Figure A.6: Kinematic distributions for the variables cos θ1 (Left) and φ (Right) for a
0+ resonance with mass 350 GeV/c2. The shaded histograms show the 1D projections
of the variables as described by the analytic pdfs. The overlaid histograms (blue,
red) show the same 1D projections for reconstructed events passing the pT and η
signal selection after the detector parameterization for 4µ and 4e final states. All
distributions are normalized to unit integral.
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Figure A.7: Distribution of the 4µ invariant mass for a sample of signal with mH=250
GeV/c2 (Left), and background (Right) ZZ events.

A.1.4 Background Subtraction

In order to establish if a newly discovered resonance is indeed the Higgs boson or

not, a hypothesis test is performed (see section 7.3.2). In this context, a tool to

disentangle signal and background events from the selected dataset is an important

prerequisite. We use the sWeight [233] technique and re-weight the selected dataset

according to how likely each event is considered to be signal by the fit. The sWeight
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Figure A.8: The 4µ invariant mass distribution for a sample of NS=70 H → ZZ
events with mH=250 GeV/c2 and NB=1000 ZZ background events. The superim-
posed curves represent the likelihood function returned by an ML fit, with NS, NB,
and m4µ as free parameters (Left). Comparison of the signal-only MC distribution of
cos θ1, with the background-subtracted distribution obtained with the sWeight tech-
nique (Center). Comparison of the background-only MC distribution of cos θ1, with
the signal-subtracted distribution obtained with the sWeight technique (Right).

technique is statistically optimal when the discriminating variable (m4µ in our case)

in the fit is uncorrelated with the subsequently used variables ( ~X in our case). On

the upper plot of figure A.8, the 4µ invariant mass distribution is shown for a sample
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of NS=70 H → ZZ events (with mH=250 GeV/c2) on top of NB=1000 continuum

ZZ background events, corresponding to a ' 5σ deviation from the background-only

hypothesis. The superimposed curves represent the likelihood function returned by

an ML fit (with NS, NB, and m4µ as free parameters). The middle plot shows the

signal sWeighted cos θ1 distribution. Similarly, the bottom plot shows the background

sWeighted cos θ1 distribution. The comparison of the two sets of points shows how

the background (signal) subtraction allows one to recover the signal (background)

distribution for the considered variable in the given sample, the deviation from the

expected pdfs being due to statistical fluctuations already present at the MC level.

A.2 SU(2)L ×U(1)Y Gauge-Invariant Couplings

To write Lagrangians generating the couplings of section 7.2.1 and respecting the

electroweak gauge symmetry one must specify the electroweak charges of the Higgs

look-alikes. Consider the example of HLLs that are “neutral,” i.e., are weak singlets

and have zero hypercharge. For the scalar case, in a conventional notation for isovector

and isoscalar gauge fields, the lowest-dimensionality Lagrangian density is

L =
1

Λ
H (A1

~Wµα
~W µα + A2BµαB

µα)

+
1

Λ
H i εµαστ (A3

~Wµα
~Wστ + A4BµαBστ ) , (A.3)

with Ai arbitrary constants and Λ a mass parameter. This object generates, amongst

others, the couplings of equation (7.9). The “true” dimensionality of the operators

in equation (7.9) is that of the ones appearing in equation (A.3), that is, dimension

five.

The form of equation (A.3) results in a coupling HZµα Z
µα → 2 p1 · p2 gµα −

2 kµkα, establishing a relation between X and Y + i Z in equation (7.9). We do not

impose it, for it is not general even at tree level. Consider, for instance, a model

with a conventionally-charged but otherwise nonstandard HLL, dubbed Φ before the

spontaneous symmetry breaking. Call Vµν any of the field tensors in equation (A.3).
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The operators in this Lagrangian could be “descendants” of dimension 6 operators

of the form Φ†ΦV 2, with Φ → H + v, see e.g. [99]. In such a case there would be a

standard-like gµν coupling plus the one induced by the higher-dimensional operators.

For a canonical-dimension spin-2 neutral HLL, Hµν , the lowest-dimension gauge-

invariant Lagrangian has couplings of dimension 5:

L =
1

Λ
Hµν (A1

~W µ
α
~W να + A2B

µ
αB

να)

+
1

Λ
Hνρ i εµναβ(A3

~W µα ~W ρβ + A4B
µαBρβ) . (A.4)

The consideration of gauge-invariant constructions for HLLs with nontrivial elec-

troweak charges would take us well beyond the scope of this work.

A.3 Phase Space for ZZ∗

In the case in which one of the two Z bosons is off-shell, the dependence on its mass

(MZ∗ , either m1 or m2) is an extra handle in determining the shapes of signal and

backgrounds. Let pcms ≡ |~p [Z]| = m1 γ1 β1 = m2 γ2 β2 be the momentum of one or

the other Z in the H center-of-mass system:

pcms =
1

2mH

Θ[mH − (MZ +MZ∗)]

×
√
m2
H − (MZ −MZ∗)2

√
m2
H − (MZ +MZ∗)2 . (A.5)

Let M be the matrix element for the process. The expectation for the rate of

events, including the dependence on MZ∗ , is

dN

dcos θ1 dcos θ2 dφ dcos Θ dΦ dMZ∗

∝ |M|2 MZ∗ pcms

(M2
Z∗ −M2

Z)
2

+M2
Z∗ Γ2

Z

, (A.6)

with |M|2 an explicit function of c1, c2, φ, Θ, Φ and MZ∗ for each specific case to be
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discussed.

A.4 General Results for J = 0 Coupled to ZZ∗

In Section 7.2 we have already written the angular distributions dΓ[0+] and dΓ[0−]

for the pure scalar and pseudoscalar cases, see equations (7.13) and (7.14). We also

discussed the T -odd and C-odd interferences between the standard coupling, which

is proportional to X in equation (7.9), and the P and Q terms of the same equation.

Thus we defined dΓ[0,Todd] and dΓ[0,Codd] in equations (7.16) and (7.17). Similarly

we discussed the complete result for the composite case with X 6= 0 and Y 6= 0,

defining dΓXY and dΓY Y in equations (7.19) and (7.20). This allows us to gather the

results corresponding to the most general deviations from the SM Higgs couplings:

dΓ[0] = X2 dΓ[0+] + (P 2 +Q2) dΓ[0−]

+X P dΓ[0, Todd] +X QdΓ[0, Codd]

+X Y dΓXY + (Y 2 + Z2) dΓY Y . (A.7)

To obtain the complete spin 0 result one must add to equation (A.7) the interfer-

ences between the nonstandard terms themselves:

∆dΓ[0] = XZ dΓXZ + Y P dΓY P

+ Y QdΓY Q + ZP dΓZP + ZQdΓZQ , (A.8)

where

dΓXZ = 2 η m3
1m

3
2m

2
H γ

2
b (c1 + c2) s s1 s2 , (A.9)

dΓY P = dΓZQ = −2m4
1m

4
2γ

3
b s s1s2(c1c2 + η2) , (A.10)

dΓY Q = −dΓZP = 2 η m4
1m

4
2 γ

3
b c (c1 + c2)s1s2 . (A.11)
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Appendix B

Chapter 9 Appendix: Razor
Searches for Supersymmetry

B.1 Event Samples

B.1.1 Simulated Signal and SM Background Samples

All simulated samples used in this work are processed with the full CMS detector

simulation and standard CMSSW reconstruction chain.

The W(→`ν) + n-jets events (` = e, µ, τ), Z(→``) + n-jets events and γ + n-jets

events are produced with Monte Carlo simulation, using the MadGraph [234] event

generator, based on a leading-order calculation of the matrix element (ME). ME cal-

culation is performed for final states with at most four primary partons, requiring

that the parton pT exceeds 10 GeV/c. PYTHIA [213] is used for parton showering,

hadronization and the underlying event description. Parton shower matching is ap-

plied to avoid double counting of emissions in overlapping phase space regions. The

MLM [235] matching algorithm with kT. The lepton clustering is used with matching

threshold 15 GeV/c. pair invariant mass is required to be m`` > 50 GeV/c2 at

the generator level. The CTEQ6L1 [236] parton distribution functions are used. The

tt̄ + jets and single top (s-channel, t-channel and tW ) backgrounds are generated

with MadGraph interfaced with PYTHIA with the associated parton pT > 20 GeV/c

and matching threshold 30 GeV/c.

Backgrounds from QCD multijet processes are studied with Monte Carlo sim-
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ulation using the ALPGEN event generator based on a leading-order calculation of

the matrix element for final states with at most six primary partons, requiring that

the parton pT exceeds 15 GeV/c. PYTHIA [213] is again used for parton showering,

hadronization and the underlying event description, and MLM parton shower match-

ing is again applied to avoid double counting of emissions in overlapping phase space

regions. PYTHIA is used to generate di-photon QCD and diboson events (W+W−,

W±Z, ZZ). The heavy flavor QCD component is studied using a sample of sim-

ulaated events generated with PYTHIA and a filter that selects electron and muon

enriched multijet samples. The generation includes bb̄, cc̄ and decays of long-lived

light mesons as sources of muons and loosely isolated hadrons or jets with an in-

creased electromagnetic fraction as a source of the electrons. The filter also requires

an outgoing parton with pT > 20 GeV/c.
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Figure B.1: The CMS benchmark mSUGRA points. Also shown is the estimated
Tevatron exclusion with 10 fb−1 (lower left shading), and a region that is theoretically
excluded by the absence of electroweak symmetry breaking (lower right shading).

To generate simulated samples for SUSY signal models the mass spectrum is first

calculated with SOFTSUSY [215] and the decays with SUSYHIT [216]. PYTHIA is then

used with the SLHA interface [217] to generate the events. The generator level cross
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section and the k-factor for the NLO calculation computed using Prospino 2 [228].

Note however that In this analysis the LO cross section values are used for mSUGRA

simulated signal events to extract the results; this facilitates comparison with results

from previous searches.

The mSUGRA benchmarks used in CMS are illustrated in Figure B.1, along with

the expected Tevatron exclusion reach with 10 fb−1 integrated luminosity.

The SM background simulated event samples are summarized in table B.1. The

effective integrated luminosities of the samples are computed using the NLO cross

section where available.

sample cross section integrated luminosity (pb−1)
ZJets-madgraph 2.4 (2.95) nb 350
WJets-madgraph 24.2 (31.0) nb 315
ttbarJets-madgraph 95 (162) pb 7.9·103

QCD-BCtoE-Pt20to30 0.108 µb 20.9
QCD-BCtoE-Pt30to80 0.138 µb 6.34
QCD-BCtoE-Pt80to170 9.46 nb 0.92
QCD-EMEnriched-Pt20to30 1.72 µb 17.6
QCD-EMEnriched-Pt30to80 3.48 µb 9.80
QCD-EMEnriched-Pt80to170 0.135 µb 37.3
PhotonJet-Pt0to15 8.446·107 pb 1.36·10−3

PhotonJet-Pt15to20 1.147·105 pb 0.944
PhotonJet-Pt20to30 5.718·104 pb 1.05
PhotonJet-Pt30to50 1.652·104 pb 6.66
PhotonJet-Pt50to80 2.723·103 pb 40.6
PhotonJet-Pt80to120 4.462·102 pb 151
PhotonJet-Pt120to170 84.43 pb 1.46·103

PhotonJet-Pt170to300 22.55 pb 5.44·103

PhotonJet-Pt300to500 1.545 pb 69.4·103

PhotonJet-Pt500toInf 9.230·10−2 pb 0.618·106

Table B.1: Cross sections and integrated luminosities for simulated samples used in
this analysis. Cross sections are quoted at leading order, NLO cross sections are given
in parentheses where available. The integrated luminosity of each sample is computed
using the NLO cross section where applicable. For samples that are enriched in
certain final states (QCD-BCtoE and QCD-EMEnriched), the cross section has been
corrected for the enrichment factor.
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DATA W (`ν)+jets Z(νν)+jets
NTOT 5.8e+07 1.1e+06 ± 3.5e+02 2.1e+05 ± 1.5e+02
trigger 2.3e+07 3e+04 ± 57 3.5e+03 ± 19

Good PV 2.2e+07 (97%) 3e+04 ± 57 (1e+02%) 3.5e+03 ± 19 (1e+02%)
≥ 2 jet 2e+07 (88%) 8.7e+03 ± 31 (29%) 1.5e+03 ± 12 (43%)

|βR| ≤ 1 1.9e+07 (84%) 7.5e+03 ± 29 (25%) 1.2e+03 ± 11 (35%)
|βR| ≤ 0.99 1.9e+07 (82%) 7.1e+03 ± 28 (24%) 1.2e+03 ± 11 (34%)

∆φ(H1, H2) < 2.8 rad 3.4e+06 (15%) 4.4e+03 ± 22 (15%) 7.9e+02 ± 9 (23%)

R > 0.45 5.9e+03 (0.026%) 9.2e+02 ± 10 (3.1%) 2.4e+02 ± 5 (7%)
MR > 400 GeV 22 ± 1.6 (0.073%) 16 ± 1.3 (0.43%)
MR > 500 GeV 5.8 ± 0.8 (0.019%) 6.1 ± 0.79 (0.18%)

R > 0.5 2.8e+03 (0.012%) 6.3e+02 ± 8.3 (2.1%) 1.8e+02 ± 4.3 (5.1%)
MR > 400 GeV 8.7 ± 1.0 (0.029%) 8.5 ± 0.9 (0.29%)
MR > 500 GeV 2.3 ± 0.5 (0.0076%) 2.7 ± 0.53 (0.078%)

R > 0.55 1.3e+03 (0.0058%) 4.2e+02 ± 6.8 (1.4%) 1.2e+02 ± 3.6 (3.6%)
MR > 400 GeV 3.1 ± 0.6 (0.01%) 5.3 ± 0.74 (0.15%)
MR > 500 GeV 0.76 ± 0.29 (0.0025%) 1.7 ± 0.41 (0.048%)

Table B.2: HAD box event yields selected with trigger HLT 100U. Efficiencies evalu-
ated w.r.t. yields after trigger.

B.1.2 Data Samples

The data sample consists of the events collected by the CMS experiment at
√
s=7

TeV during the Run2010A CMS data-taking period, starting in March 2010.

We use the electron primary datasets (PDs) (EG and Electron) the jet triggers

(JetMETTau, JetMET, Jet, and MultiJet). The DiJetAve trigger (with different L1

pre-scale factors per luminosity era) was included in the JetMETTau, JetMET, and Jet

PDs.

B.1.3 Analysis Cut-Flow for Data and Simulated Events

In Tables B.2-B.14 we present the yields for data and simulated event samples after

each of the requirements in the cut-based selection of the 2010 search analysis, for

the HAD, ELE and MU signal boxes. Yields are normalized to 35 pb−1 for simulated

events and include both SM background processes and sample signal models, defined

in figure B.1.
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tt̄ Single t s-chan Single t t-chan
NTOT 5.5e+03 ± 4.9 1.5e+02 ± 0.26 2.3e+03 ± 3.3
trigger 3.2e+03 ± 3.7 27 ± 0.11 3.3e+02 ± 1.3

Good PV 3.2e+03 ± 3.7 (100%) 27 ± 0.11 (100%) 3.3e+02 ± 1.3 (100%)
≥ 2 jet 3.1e+03 ± 3.7 (99%) 26 ± 0.11 (97%) 3.2e+02 ± 1.2 (95%)

|βR| ≤ 1 3.1e+03 ± 3.7 (98%) 23 ± 0.1 (86%) 2.9e+02 ± 1.2 (89%)
|βR| ≤ 0.99 3.1e+03 ± 3.6 (97%) 22 ± 0.1 (83%) 2.9e+02 ± 1.2 (86%)

∆φ(H1, H2) < 2.8 rad 9.5e+02 ± 2 (30%) 11 ± 0.073 (42%) 1.6e+02 ± 0.87 (48%)

R > 0.45 84 ± 0.6 (2.7%) 1.4 ± 0.026 (5.2%) 13 ± 0.25 (3.8%)
MR > 400 GeV 5.6 ± 0.16 (0.18%) 0.052 ± 0.005 (0.2%) 0.69 ± 0.057 (0.21%)
MR > 500 GeV 1.4 ± 0.079 (0.046%) 0.011 ± 0.0023 (0.04%) 0.16 ± 0.027 (0.047%)

R > 0.5 53 ± 0.48 (1.7%) 0.75 ± 0.019 (2.8%) 6.3 ± 0.17 (1.9%)
MR > 400 GeV 2.5 ± 0.1 (0.078%) 0.02 ± 0.0031 (0.079%) 0.16 ± 0.027 (0.0047%)
MR > 500 GeV 0.5 ± 0.046 (0.016%) 0.0057 ± 0.0016 (0.021%) 0.028 ± 0.012 (0.0086%)

R > 0.55 34 ± 0.38 (1.1%) 0.42 ± 0.014 (1.5%) 3.1 ± 0.12 (0.95%)
MR > 400 GeV 1.2 ± 0.072 (0.038%) 0.009 ± 0.0021 (0.035%) 0.057 ± 0.016 (0.017%)
MR > 500 GeV 0.24 ± 0.032 (0.0077%) 0.0014 ± 0.00082 (0.0053%) 0.014 ± 0.0082 (0.0043%)

Table B.3: HAD box event yields selected with trigger HLT 100U. Efficiencies evalu-
ated w.r.t. yields after trigger.

LM0 LM1 LM2 LM3
NTOT 1.4e+03 ± 3 1.7e+02 ± 0.38 21 ± 0.048 1.2e+02 ± 0.25
trigger 9e+02 ± 2.4 1.2e+02 ± 0.31 15 ± 0.04 79 ± 0.2

Good PV 9e+02 ± 2.4 (100%) 1.2e+02 ± 0.31 (100%) 14 ± 0.04 (100%) 79 ± 0.2 (100%)
≥ 2 jet 8.9e+02 ± 2.4 (99%) 1.2e+02 ± 0.31 (97%) 14 ± 0.039 (97%) 78 ± 0.2 (99%)

|βR| ≤ 1 8.5e+02 ± 2.4 (94%) 1e+02 ± 0.29 (86%) 12 ± 0.037 (84%) 74 ± 0.2 (93%)
|βR| ≤ 0.99 8.3e+02 ± 2.3 (92%) 1e+02 ± 0.29 (85%) 12 ± 0.037 (84%) 73 ± 0.2 (92%)

∆φ(H1, H2) < 2.8 rad 5.2e+02 ± 1.9 (58%) 79 ± 0.26 (66%) 9.6 ± 0.033 (66%) 47 ± 0.16 (59%)

R > 0.45 1.5e+02 ± 1 (17%) 35 ± 0.17 (29%) 4.4 ± 0.022 (31%) 15 ± 0.088 (19%)
MR > 400 GeV 98 ± 0.8 (11%) 31 ± 0.16 (26%) 4.2 ± 0.022 (29%) 13 ± 0.084 (17%)
MR > 500 GeV 57 ± 0.61 (6.3%) 26 ± 0.15 (22%) 4 ± 0.021 (27%) 12 ± 0.078 (15%)

R > 0.5 1.1e+02 ± 0.84 (12%) 26 ± 0.15 (22%) 3.3 ± 0.019 (23%) 10 ± 0.074 (13%)
MR > 400 GeV 63 ± 0.64 (7%) 23 ± 0.14 (19%) 3.1 ± 0.019 (21%) 9.2 ± 0.07 (12%)
MR > 500 GeV 33 ± 0.47 (3.7%) 18 ± 0.12 (15%) 2.9 ± 0.018 (20%) 7.9 ± 0.064 (10%)

R > 0.55 74 ± 0.7 (8.2%) 19 ± 0.12 (16%) 2.4 ± 0.016 (17%) 7.2 ± 0.062 (9.1%)
MR > 400 GeV 40 ± 0.51 (4.5%) 16 ± 0.12 (13%) 2.2 ± 0.016 (15%) 6.3 ± 0.057 (7.9%)
MR > 500 GeV 19 ± 0.35 (2.1%) 13 ± 0.1 (10%) 2.1 ± 0.015 (14%) 5.2 ± 0.052 (6.6%)

Table B.4: HAD box event yields selected with trigger HLT 100U. Efficiencies evalu-
ated w.r.t. yields after trigger.
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LM4 LM5 LM6 LM7
NTOT 66 ± 0.13 17 ± 0.034 11 ± 0.021 42 ± 0.081
trigger 47 ± 0.11 12 ± 0.029 5.6 ± 0.015 11 ± 0.041

Good PV 47 ± 0.11 (100%) 12 ± 0.029 (100%) 5.6 ± 0.015 (100%) 11 ± 0.041 (100%)
≥ 2 jet 46 ± 0.11 (99%) 12 ± 0.029 (98%) 5.4 ± 0.015 (97%) 11 ± 0.041 (98%)

|βR| ≤ 1 43 ± 0.1 (91%) 11 ± 0.028 (90%) 4.6 ± 0.014 (83%) 11 ± 0.04 (94%)
|βR| ≤ 0.99 42 ± 0.1 (90%) 11 ± 0.027 (89%) 4.6 ± 0.013 (82%) 10 ± 0.04 (93%)

∆φ(H1, H2) < 2.8 rad 29 ± 0.087 (62%) 7.5 ± 0.023 (64%) 3.7 ± 0.012 (66%) 4.9 ± 0.028 (44%)

R > 0.45 11 ± 0.053 (23%) 2.9 ± 0.014 (25%) 1.8 ± 0.0085 (33%) 0.89 ± 0.012 (8%)
MR > 400 GeV 10 ± 0.051 (21%) 2.6 ± 0.014 (22%) 1.7 ± 0.0083 (31%) 0.39 ± 0.0078 (3.5%)
MR > 500 GeV 9.2 ± 0.049 (20%) 2.5 ± 0.013 (21%) 1.7 ± 0.0081 (30%) 0.31 ± 0.0069 (2.7%)

R > 0.5 7.7 ± 0.045 (16%) 2.1 ± 0.012 (18%) 1.4 ± 0.0074 (25% ) 0.57 ± 0.0094 (5.1%)
MR > 400 GeV 7.1 ± 0.043 (15%) 1.9 ± 0.012 (16%) 1.3 ± 0.007 (23%) 0.22 ± 0.0059 (2%)
MR > 500 GeV 6.5 ± 0.041 (14%) 1.8 ± 0.011 (15%) 1.3 ± 0.007 (23%) 0.17 ± 0.0051 (1.5%)

R > 0.55 5.4 ± 0.037 (12%) 1.5 ± 0.01 (13%) 1 ± 0.0063 (18%) 0.37 ± 0.0076 (3.4%)
MR > 400 GeV 5.0 ± 0.036 (11%) 1.3 ± 0.0098 (11%) 0.96 ± 0.0062 (17%) 0.13 ± 0.0045 (1.2%)
MR > 500 GeV 4.4 ± 0.034 (9.5%) 1.3 ± 0.0095 (11%) 0.92 ± 0.006 (17%) 0.094 ± 0.0038 (0.84%)

Table B.5: HAD box event yields selected with trigger HLT 100U. Efficiencies evalu-
ated w.r.t. yields after trigger.

LM8 LM9 LM10 LM11
NTOT 26 ± 0.055 2.5e+02 ± 0.53 1.7 ± 0.0037 29 ± 0.056
trigger 14 ± 0.04 49 ± 0.23 0.81 ± 0.0026 19 ± 0.046

Good PV 14 ± 0.04 (100%) 48 ± 0.23 (100%) 0.81 ± 0.0026 (100%) 19 ± 0.046 (100%)
≥ 2 jet 14 ± 0.04 (99%) 47 ± 0.23 (97%) 0.8 ± 0.0026 (98%) 19 ± 0.045 (97%)

|βR| ≤ 1 13 ± 0.039 (95%) 45 ± 0.23 (92%) 0.73 ± 0.0024 (90%) 17 ± 0.043 (87%)
|βR| ≤ 0.99 13 ± 0.039 (93%) 44 ± 0.22 (91%) 0.72 ± 0.0024 (89%) 17 ± 0.042 (86%)

∆φ(H1, H2) < 2.8 rad 7.9 ± 0.03 (57%) 23 ± 0.16 (47%) 0.53 ± 0.0021 (66%) 12 ± 0.037 (65%)

R > 0.45 2.2 ± 0.016 (16%) 4.3 ± 0.07 (8.9%) 0.21 ± 0.0013 (26%) 5.1 ± 0.024 (27%)
MR > 500 GeV 1.7 ± 0.014 (12%) 1.5 ± 0.041 (3.1%) 0.018 ± 0.00038 (2.2%) 4.5 ± 0.022 (23%)

R > 0.5 1.5 ± 0.013 (11%) 2.8 ± 0.056 (5.7%) 0.16 ± 0.0011 (20%) 3.7 ± 0.02 (20%)
MR > 500 GeV 1.1 ± 0.011 (7.8%) 0.75 ± 0.029 (1.5%) 0.0081 ± 0.00026 (1%) 3.2 ± 0.019 (17%)

R > 0.55 0.98 ± 0.011 (7.1%) 1.7 ± 0.044 (3.6%) 0.11 ± 0.00097 (14%) 2.7 ± 0.017 (14%)
MR > 500 GeV 0.7 ± 0.0091 (5.1%) 0.36 ± 0.02 (0.73%) 0.0039 ± 0.00018 (0.48%) 2.3 ± 0.016 (12%)

Table B.6: HAD box event yields selected with trigger HLT 100U. Efficiencies evalu-
ated w.r.t. yields after trigger.

DATA W (`ν)+jets tt̄
NTOT 7.6e+07 1.1e+06 ± 3.5e+02 5.5e+03 ± 4.9
trigger 3.9e+05 1.6e+05 ± 1.3e+02 6.1e+02 ± 1.6

Good PV 3.9e+05 (100%) 1.6e+05 ± 1.3e+02 (100%) 6.1e+02 ± 1.6 (100%)
≥ 2 jet 1.3e+05 (34%) 3e+04 ± 57 (18%) 6.1e+02 ± 1.6 (99%)

|βR| ≤ 1 1.1e+05 (29%) 2.5e+04 ± 52 (15%) 6e+02 ± 1.6 (98%)
|βR| ≤ 0.99 1.1e+05 (28%) 2.4e+04 ± 52 (15%) 5.9e+02 ± 1.6 (96%)

∆φ(H1, H2) < 2.8 rad 4.5e+04 (12%) 1.7e+04 ± 43 (11%) 3.1e+02 ± 1.2 (50%)

R > 0.45 5.9e+03 (1.5%) 6.6e+03 ± 27 (4.1%) 49 ± 0.46 (8%)
MR > 500 GeV 1.1 ± 0.35 (0.00068%) 0.29 ± 0.035 (0.047%)

R > 0.5 4.4e+03 (1.1%) 5e+03 ± 23 (3.1%) 31 ± 0.37 (5.1%)
MR > 500 GeV 0.76 ± 0.29 (0.00048%) 0.12 ± 0.022 (0.019%)

R > 0.55 3.2e+03 (0.82%) 3.6e+03 ± 20 (2.3%) 20 ± 0.29 (3.3%)
MR > 500 GeV 0.44 ± 0.22 (0.00027%) 0.03 ± 0.011 (0.0049%)

Table B.7: ELE box event yields selected with electron triggers. Efficiencies evaluated
w.r.t. yields after trigger.
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LM0 LM1 LM2 LM3
NTOT 1.4e+03 ± 3 1.7e+02 ± 0.38 21 ± 0.048 1.2e+02 ± 0.25
trigger 1e+02 ± 0.82 10 ± 0.093 1.2 ± 0.012 9.1 ± 0.069

Good PV 1e+02 ± 0.82 (100%) 10 ± 0.093 (100%) 1.2 ± 0.012 (100%) 9.1 ± 0.069 (100%)
≥ 2 jet 99 ± 0.81 (97%) 9.3 ± 0.088 (89%) 1.1 ± 0.011 (87%) 8.8 ± 0.068 (96%)

|βR| ≤ 1 94 ± 0.78 (92%) 8.2 ± 0.082 (78%) 0.91 ± 0.01 (76%) 8.2 ± 0.065 (90%)
|βR| ≤ 0.99 92 ± 0.78 (90%) 8 ± 0.081 (77%) 0.9 ± 0.01 (74%) 8 ± 0.065 (88%)

∆φ(H1, H2) < 2.8 rad 59 ± 0.62 (57%) 6.2 ± 0.072 (60%) 0.69 ± 0.0088 (58%) 5.3 ± 0.053 (58%)

R > 0.45 15 ± 0.32 (15%) 2.6 ± 0.046 (25%) 0.3 ± 0.0058 (25%) 1.6 ± 0.029 (18%)
MR > 500 GeV 3.4 ± 0.15 (3.3%) 1.5 ± 0.035 (14%) 0.2 ± 0.0047 (17%) 0.89 ± 0.022 (9.8%)

R > 0.5 11 ± 0.26 (10%) 1.8 ± 0.039 (18%) 0.21 ± 0.0049 (18%) 1.1 ± 0.024 (13%)
MR > 500 GeV 1.7 ± 0.11 (1.7%) 0.96 ± 0.028 (9.2%) 0.14 ± 0.0039 (11%) 0.56 ± 0.017 (6.1%)

R > 0.55 7.3 ± 0.22 (7.2%) 1.3 ± 0.033 (13%) 0.15 ± 0.0041 (13%) 0.79 ± 0.02 (8.7%)
MR > 500 GeV 0.89 ± 0.076 (0.87%) 0.63 ± 0.023 (6%) 0.093 ± 0.0032 (7.7%) 0.35 ± 0.014 (3.8%)

Table B.8: ELE box event yields selected with electron triggers. Efficiencies evaluated
w.r.t. yields after trigger.

LM4 LM5 LM6 LM7
NTOT 66 ± 0.13 17 ± 0.034 11 ± 0.021 42 ± 0.081
trigger 4.6 ± 0.034 1.2 ± 0.0093 1.4 ± 0.0074 3.7 ± 0.024

Good PV 4.6 ± 0.034 (100%) 1.2 ± 0.0093 (100%) 1.4 ± 0.0074 (100%) 3.7 ± 0.024 (100%)
≥ 2 jet 4.4 ± 0.034 (96%) 1.2 ± 0.0091 (97%) 1.1 ± 0.0067 (82%) 3.3 ± 0.022 (88%)

|βR| ≤ 1 4.1 ± 0.033 (89%) 1.1 ± 0.0087 (88%) 0.98 ± 0.0062 (70%) 2.9 ± 0.021 (78%)
|βR| ≤ 0.99 4.1 ± 0.032 (88%) 1 ± 0.0086 (87%) 0.96 ± 0.0062 (69%) 2.8 ± 0.021 (76%)

∆φ(H1, H2) < 2.8 rad 2.8 ± 0.027 (60%) 0.75 ± 0.0073 (62%) 0.76 ± 0.0055 (55%) 1.9 ± 0.017 (51%)

R > 0.45 0.91 ± 0.015 (20%) 0.28 ± 0.0045 (23%) 0.34 ± 0.0037 (24%) 0.63 ± 0.0098 (17%)
MR > 500 GeV 0.54 ± 0.012 (12%) 0.15 ± 0.0033 (13%) 0.22 ± 0.0029 (16%) 0.037 ± 0.0024 (0.98%)

R > 0.5 0.63 ± 0.013 (14%) 0.2 ± 0.0038 (17%) 0.25 ± 0.0032 (18%) 0.45 ± 0.0083 (12%)
MR > 500 GeV 0.35 ± 0.0094 (7.5%) 0.1 ± 0.0027 (8.5%) 0.16 ± 0.0025 (11%) 0.018 ± 0.0016 (0.47%)

R > 0.55 0.43 ± 0.011 (9.4%) 0.14 ± 0.0031 (12%) 0.18 ± 0.0027 (13%) 0.32 ± 0.007 (8.5%)
MR > 500 GeV 0.22 ± 0.0075 (4.7%) 0.066 ± 0.0022 (5.5%) 0.11 ± 0.0021 (7.7%) 0.0094 ± 0.0012 (0.25%)

Table B.9: ELE box event yields selected with electron triggers. Efficiencies evaluated
w.r.t. yields after trigger.

LM8 LM9 LM10 LM11
NTOT 26 ± 0.055 2.5e+02 ± 0.53 1.7 ± 0.0037 29 ± 0.056
trigger 2.7 ± 0.018 12 ± 0.12 0.16 ± 0.0012 2.4 ± 0.016

Good PV 2.7 ± 0.018 (100%) 12 ± 0.12 (100%) 0.16 ± 0.0012 (100%) 2.4 ± 0.016 (100%)
≥ 2 jet 2.5 ± 0.017 (96%) 9.3 ± 0.1 (76%) 0.15 ± 0.0011 (95%) 2.3 ± 0.016 (94%)

|βR| ≤ 1 2.4 ± 0.017 (90%) 8 ± 0.096 (66%) 0.13 ± 0.001 (83%) 2 ± 0.015 (84%)
|βR| ≤ 0.99 2.3 ± 0.017 (88%) 7.9 ± 0.095 (65%) 0.13 ± 0.001 (81%) 2 ± 0.015 (83%)

∆φ(H1, H2) < 2.8 rad 1.5 ± 0.013 (58%) 5.1 ± 0.076 (42%) 0.1 ± 0.00092 (63%) 1.5 ± 0.013 (62%)

R > 0.45 0.46 ± 0.0073 (17%) 1.5 ± 0.041 (12%) 0.048 ± 0.00063 (30%) 0.57 ± 0.0078 (24%)
MR > 500 GeV 0.22 ± 0.0051 (8.4%) 0.092 ± 0.01 (0.75%) 0.002 ± 0.00013 (1.2%) 0.36 ± 0.0062 (15%)

R > 0.5 0.32 ± 0.0061 (12%) 1.1 ± 0.035 (8.6%) 0.037 ± 0.00055 (23%) 0.4 ± 0.0066 (17%)
MR > 500 GeV 0.14 ± 0.0041 (5.3%) 0.051 ± 0.0076 (0.42%) 0.00095 ± 8.8e-05 (0.59%) 0.24 ± 0.0051 (9.9%)

R > 0.55 0.21 ± 0.005 (8.1%) 0.73 ± 0.029 (6%) 0.028 ± 0.00048 (17%) 0.28 ± 0.0055 (12%)
MR > 500 GeV 0.089 ± 0.0032 (3.3%) 0.027 ± 0.0056 (0.22%) 0.00053 ± 6.6e-05 (0.33%) 0.16 ± 0.0041 (6.5%)

Table B.10: ELE box event yields selected with electron triggers. Efficiencies evalu-
ated w.r.t. yields after trigger.
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DATA W (`ν)+jets tt̄
NTOT 4.9e+07 1.1e+06 ± 3.5e+02 5.5e+03 ± 4.9
trigger 2.4e+05 1.6e+05 ± 1.3e+02 5.7e+02 ± 1.6

Good PV 2.4e+05 (100%) 1.6e+05 ± 1.3e+02 (100%) 5.7e+02 ± 1.6 (100%)
≥ 2 jet 6.3e+04 (26%) 3.1e+04 ± 59 (19%) 5.7e+02 ± 1.6 (99%)

|βR| ≤ 1 5.2e+04 (21%) 2.5e+04 ± 53 (16%) 5.6e+02 ± 1.5 (98%)
|βR| ≤ 0.99 5e+04 (21%) 2.5e+04 ± 52 (15%) 5.4e+02 ± 1.5 (96%)

∆φ(H1, H2) < 2.8 rad 2.8e+04 (11%) 1.8e+04 ± 44 (11%) 2.9e+02 ± 1.1 (51%)

R > 0.45 6.7e+03 (2.8%) 7.1e+03 ± 28 (4.4%) 45 ± 0.44 (8%)
MR > 500 GeV 1.5 ± 0.41 (0.00094%) 0.27 ± 0.034 (0.048%)

R > 0.5 5.1e+03 (2.1%) 5.4e+03 ± 24 (3.3%) 29 ± 0.35 (5.1%)
MR > 500 GeV 0.55 ± 0.24 (0.00033%) 0.069 ± 0.017 (0.012%)

R > 0.55 3.7e+03 (1.5%) 4e+03 ± 21 (2.5%) 18 ± 0.28 (3.2%)
MR > 500 GeV 0.22 ± 0.15 (0.00013%) 0.026 ± 0.011 (0.0045%)

Table B.11: MU box event yields selected with muon triggers. Efficiencies evaluated
w.r.t. yields after trigger.

LM0 LM1 LM2 LM3
NTOT 1.4e+03 ± 3 1.7e+02 ± 0.38 21 ± 0.048 1.2e+02 ± 0.25
trigger 91 ± 0.77 8.8 ± 0.085 1 ± 0.011 7.8 ± 0.064

Good PV 91 ± 0.77 (100%) 8.8 ± 0.085 (100%) 1 ± 0.011 (100%) 7.8 ± 0.064 (100%)
≥ 2 jet 87 ± 0.76 (96%) 7.8 ± 0.08 (88%) 0.89 ± 0.0099 (86%) 7.5 ± 0.063 (96%)

|βR| ≤ 1 83 ± 0.74 (92%) 6.8 ± 0.075 (77%) 0.77 ± 0.0092 (74%) 7 ± 0.06 (89%)
|βR| ≤ 0.99 81 ± 0.73 (90%) 6.7 ± 0.074 (76%) 0.75 ± 0.0091 (73%) 6.8 ± 0.06 (88%)

∆φ(H1, H2) < 2.8 rad 52 ± 0.58 (57%) 5.3 ± 0.066 (60%) 0.59 ± 0.0081 (58%) 4.6 ± 0.049 (58%)

R > 0.45 14 ± 0.3 (15%) 2.2 ± 0.043 (26%) 0.25 ± 0.0053 (25%) 1.4 ± 0.027 (18%)
MR > 500 GeV 3.2 ± 0.14 (3.5%) 1.3 ± 0.033 (15%) 0.17 ± 0.0044 (17%) 0.72 ± 0.019 (9.3%)

R > 0.5 9.3 ± 0.25 (10%) 1.6 ± 0.037 (18%) 0.18 ± 0.0045 (18%) 0.98 ± 0.023 (12%)
MR > 500 GeV 1.6 ± 0.1 (1.8%) 0.89 ± 0.027 (10%) 0.12 ± 0.0036 (12%) 0.46 ± 0.015 (5.8%)

R > 0.55 6.3 ± 0.2 (7%) 1.2 ± 0.031 (13%) 0.13 ± 0.0037 (12%) 0.67 ± 0.019 (8.5%)
MR > 500 GeV 0.75 ± 0.07 (0.83%) 0.59 ± 0.022 (6.7%) 0.077 ± 0.0029 (7.5%) 0.28 ± 0.012 (3.6%)

Table B.12: MU box event yields selected with muon triggers. Efficiencies evaluated
w.r.t. yields after trigger.

LM4 LM5 LM6 LM7
NTOT 66 ± 0.13 17 ± 0.034 11 ± 0.021 42 ± 0.081
trigger 4 ± 0.032 1.1 ± 0.0087 1.2 ± 0.007 3.6 ± 0.023

Good PV 4 ± 0.032 (100%) 1.1 ± 0.0087 (100%) 1.2 ± 0.007 (100%) 3.6 ± 0.023 (100%)
≥ 2 jet 3.8 ± 0.031 (95%) 1 ± 0.0085 (96%) 0.98 ± 0.0062 (80%) 3.1 ± 0.022 (87%)

|βR| ≤ 1 3.5 ± 0.03 (88%) 0.92 ± 0.0081 (88%) 0.83 ± 0.0057 (67%) 2.7 ± 0.02 (76%)
|βR| ≤ 0.99 3.5 ± 0.03 (87%) 0.91 ± 0.008 (86%) 0.82 ± 0.0057 (66%) 2.6 ± 0.02 (74%)

∆φ(H1, H2) < 2.8 rad 2.4 ± 0.025 (60%) 0.66 ± 0.0069 (63%) 0.65 ± 0.0051 (53%) 1.8 ± 0.017 (51%)

R > 0.45 0.83 ± 0.015 (21%) 0.25 ± 0.0042 (23%) 0.3 ± 0.0034 (24%) 0.63 ± 0.0098 (18%)
MR > 500 GeV 0.47 ± 0.011 (12%) 0.13 ± 0.003 (12%) 0.19 ± 0.0027 (15%) 0.03 ± 0.0021 (0.83%)

R > 0.5 0.59 ± 0.012 (15%) 0.17 ± 0.0035 (17%) 0.22 ± 0.0029 (18%) 0.46 ± 0.0084 (13%)
MR > 500 GeV 0.3 ± 0.0088 (7.6%) 0.082 ± 0.0024 (7.7%) 0.13 ± 0.0023 (11%) 0.015 ± 0.0015 (0.41%)

R > 0.55 0.4 ± 0.01 (10%) 0.12 ± 0.003 (12%) 0.16 ± 0.0025 (13%) 0.32 ± 0.007 (9.1%)
MR > 500 GeV 0.19 ± 0.007 (4.8%) 0.055 ± 0.002 (5.2%) 0.09 ± 0.0019 (7.3%) 0.0083 ± 0.0011 (0.23%)

Table B.13: MU box event yields selected with muon triggers. Efficiencies evaluated
w.r.t. yields after trigger.
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LM8 LM9 LM10 LM11
NTOT 26 ± 0.055 2.5e+02 ± 0.53 1.7 ± 0.0037 29 ± 0.056
trigger 2.1 ± 0.016 11 ± 0.11 0.15 ± 0.0011 2.1 ± 0.015

Good PV 2.1 ± 0.016 (100%) 11 ± 0.11 (100%) 0.15 ± 0.0011 (100%) 2.1 ± 0.015 (100%)
≥ 2 jet 2 ± 0.015 (95%) 8.3 ± 0.097 (73%) 0.14 ± 0.0011 (95%) 2 ± 0.015 (94%)

|βR| ≤ 1 1.9 ± 0.015 (88%) 6.9 ± 0.089 (61%) 0.13 ± 0.001 (83%) 1.8 ± 0.014 (84%)
|βR| ≤ 0.99 1.9 ± 0.015 (87%) 6.7 ± 0.087 (59%) 0.12 ± 0.001 (81%) 1.8 ± 0.014 (82%)

∆φ(H1, H2) < 2.8 rad 1.2 ± 0.012 (58%) 4.4 ± 0.071 (39%) 0.098 ± 0.0009 (64%) 1.3 ± 0.012 (62%)

R > 0.45 0.41 ± 0.0069 (19%) 1.3 ± 0.039 (12%) 0.045 ± 0.00061 (30%) 0.51 ± 0.0074 (24%)
MR > 500 GeV 0.18 ± 0.0046 (8.3%) 0.07 ± 0.0089 (0.62%) 0.0017 ± 0.00012 (1.1%) 0.31 ± 0.0058 (14%)

R > 0.5 0.28 ± 0.0057 (13%) 0.94 ± 0.033 (8.3%) 0.035 ± 0.00053 (23%) 0.35 ± 0.0062 (17%)
MR > 500 GeV 0.11 ± 0.0035 (5%) 0.041 ± 0.0068 (0.36%) 0.00086 ± 8.4e-05 (0.56%) 0.2 ± 0.0047 (9.4%)

R > 0.55 0.2 ± 0.0048 (9.2%) 0.63 ± 0.027 (5.5%) 0.026 ± 0.00046 (17%) 0.25 ± 0.0052 (12%)
MR > 500 GeV 0.07 ± 0.0029 (3.3%) 0.022 ± 0.0049 (0.19%) 0.00048 ± 6.2e-05 (0.31%) 0.13 ± 0.0038 (6.3%)

Table B.14: MU box event yields selected with muon triggers. Efficiencies evaluated
w.r.t. yields after trigger.
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B.2 HT Trigger Turn-On Efficiency Convolution

The shape of theMR distribution for different background processes in the signal HAD

box is dictated not only by the intrinsic exponentially falling MR scaling behavior but

is also sculpted by the HT triggers used to select these events. The reason is that an

event’s efficiency for passing these HT triggers is correlated with its reconstructed MR

value. In order to recover the exponential MR scaling behavior in the HAD box, even

in ranges of MR where these HT triggers are not fully efficient, we must understand

and model these trigger efficiencies for each background process.

In order to study how to model these efficiency turn-on curves, we implement an

emulation of the HLT level HT , which is the used to make the trigger decisions, using

uncorrected calorimetric jets and defining HT as the scalar sum of the jet pT s for jets

with pT > 20 GeV/c (matching the HLT requirements). We check the accuracy of this

approximation by examining events selected using the prescaled HLT DiJetAve15U

trigger and comparing the MR trigger turn-on curves. Results of this exercise are

shown in figures B.2 and B.3 for HT thresholds of 100 and 140 GeV, respectively. We

observe excellent agreement between the actual and emulated trigger turn-ons. This

is expected, since the MR turn-on is more sensitive to the differences between the

quantities MR and HT , rather than the differences between HT reconstructed at the

HLT and that calculated using offline reconstructed calorimetric jets.

Using the emulated HT triggers, we evaluate MR trigger turn-on curves for dif-

ferent background processes to the HAD box at different values of the R cut, using

simulated events. We observe that for sufficiently high R cuts (∼ R > 0.3) the shape

of these trigger turn-on curves is well described by an error function:

fTRIG(MR | µ, λ) =
1√
2π

∫ √2λ(MR−µ)

−∞
e−t

2/2dt =
1

2
[1 + erf(λ(MR − µ))] . (B.1)

We fit these turn-on curves derived from simulated events, for different values of

the R cut and different HT trigger thresholds, in a binned maximum likelihood fit
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Figure B.2: Events selected using the HLT DiJetAve15U and satisfying the HAD Box
requirements without an R cut. (Left) MR turn-on curves for the HLT HT100U HLT
trigger bit. (center) MR turn-on curves for the emulated HLT HT100U trigger decision.
(Right) Comparison of the HLT trigger bit and emulated MR turn-on curves.
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Figure B.3: Events selected using the HLT DiJetAve15U and satisfying the HAD Box
requirements without an R cut. (Left) MR turn-on curves for the HLT HT140U HLT
trigger bit. (center) MR turn-on curves for the emulated HLT HT140U trigger decision.
(Right) Comparison of the HLT trigger bit and emulated MR turn-on curves.

where the likelihood is constructed as the product of bin-by-bin binomial probabilities.

Fits of these curves are shown in figures B.7-B.10. We also observe that these trigger

turn-on curves are similar between different background processes, but not necessarily

identical (due to differences in kinematic correlations between MR and HT ). We

measure, in simulated events, the parameters µ and λ for each trigger, each process

and each physics object box, independently. These parameter values derived from

simulated events are used to build the initial trigger turn-on curves for each process,

with additional parameters introduced to account for differences between simulation
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and data for these curves, as described describe below. These parameter values are

summarized in Tables B.15-B.18.

The values of the parameters µ and λ, for a given process, have a clear depen-

dence on the HT threshold being considered. We denote µijk(λijk) as the µ(λ) HT

trigger turn-on parameter for the ith HT threshold, the jth R cut value and the kth

background process. We observe that µ is linearly correlated with the HT threshold,

which is demonstrated in figure B.4 (left) by plotting the values of µ for the various

different background processes and R cuts, scaling by the HT threshold and normaliz-

ing for each process separately. Similarly, we observe that λ is linearly correlated with

the inverse of the square root of the HT threshold, illustrated in figure B.4 (right).

Considering the precision with which we know these parameters from the fits to sim-

ulated data, and by fitting the distributions with a Normal function, we estimate

that this HT threshold correspondence holds within a few percent deviation. This

HT dependence for these two parameters can be understood in in considering MR as

an estimator of the HT . The functional form which we are fitting suggests that MR

has an approximately Gaussian response relative to HT . The linear HT scaling of the

µ parameter results from this response being approximately linear (at least in the

region from HT 100 to 150 GeV). The HT threshold dependence of the λ parameters

suggests that the resolution of this response is inversely proportional to the inverse

of the HT threshold.
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Figure B.4: (Left) HT trigger turn-on µ parameters for different background processes
in the hadronic box, normalized by the HT threshold and for each process separately.
(Right) HT trigger turn-on λ parameters for different background processes in the
hadronic box, scaled by the square-root of the HT threshold and normalized for each
process separately.
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These observations dictate the strategy for unfolding the HT trigger efficiency

in the HAD box. The selected events populating the HAD box are selected using

three different HT triggers, with thresholds of 100, 140 and 150 GeV. As a result,

the trigger turn-on for a given process is not one instance of the function fTRIG

from equation (B.1), but rather an integrated-luminosity-fraction-weighted sum of

the turn-on functions for the three different triggers used. Explicitly, fTRIG(x | µ, λ)

is generalized to F TRIG(x | ~µ,~λ), which is defined as

F TRIG(x | ~µ,~λ) =
NTRIG∑

j

εjfTRIG(x | µj, λj) , (B.2)

where NTRIG = 3 and εj is the fraction of the total integrated luminosity for which

trigger j was the lowest threshold, un-prescaled HT trigger in the HLT menu. The

HT threshold dependence of the parameters µ and λ which we observe in simulated

events is assumed for the QCD multijet background to the hadronic box, such that

we constrain the ratio parameters µ and λ for different HT trigger thresholds to those

described above, floating only one universal parameter for µ and λ, respectively.

For the non-QCD multijet backgrounds, we assume that the ratios of the pa-

rameters µ and λ between difference background processes to be those measured in

simulated events. Two parameters are floated in the final fit in the hadronic box,

corresponding to universal scaling factors µEWK and λEWK which are applied as an

overall normalization of the µ and λ MC values. Allowing these parameters to vary

effectively takes into account the possibility of the jet energy scale difference between

corrected calorimetric jets (used to calculate MR) and trigger level jets or the resolu-

tions of these jets being different between simulation and data.

In Figure B.5 and B.6 we present examples of data/simulation comparisons for

the HLT HT100U and HLT HT140U trigger turn-on efficiency curves. We observe

agreement within large statistical uncertainties.
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Figure B.5: MR turn-on curves for the HLT HT100U trigger. Events selected in data
by the MU Box are compared to a cocktail of simulated SM background satisfying
the MU∗ Box selection, with relative yields set by MU∗ Box expectations.
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Figure B.6: MR turn-on curves for the HLT HT140U trigger for events selected in data
by the QCD control box and simulated QCD ALPGEN events satisfying the HAD
Box selection.
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HT threshold / R cut µ λ

W (µν)+jets
HT100U / R > 0.40 238 ± 3 GeV (120 ± 5) x 10−4 GeV−1

HT140U / R > 0.40 323 ± 8 GeV (80 ± 5) x 10−4 GeV−1

HT150U / R > 0.40 342 ± 10 GeV (75 ± 5) x 10−4 GeV−1

HT100U / R > 0.45 244 ± 2 GeV (117 ± 4) x 10−4 GeV−1

HT140U / R > 0.45 324 ± 6 GeV (82 ± 4) x 10−4 GeV−1

HT150U / R > 0.45 342 ± 7 GeV (78 ± 4) x 10−4 GeV−1

HT100U / R > 0.50 249 ± 2 GeV (112 ± 3) x 10−4 GeV−1

HT140U / R > 0.50 334 ± 5 GeV (79 ± 3) x 10−4 GeV−1

HT150U / R > 0.50 355 ± 6 GeV (74 ± 3) x 10−4 GeV−1

Table B.15: HT trigger turn-on parameters for simulated W (µν)+jets events satisfy-
ing the HAD Box requirements for different R cuts and HT thresholds.
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Figure B.7: W (µν)+jets emulated HT trigger turn-ons in the HAD Box.
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HT threshold / R cut µ λ

tt̄(µ+X)+jets
HT100U / R > 0.40 200 ± 1 GeV (94 ± 1) x 10−4 GeV−1

HT140U / R > 0.40 284 ± 1 GeV (83 ± 1) x 10−4 GeV−1

HT150U / R > 0.40 302 ± 1 GeV (82 ± 1) x 10−4 GeV−1

HT100U / R > 0.45 198 ± 1 GeV (101 ± 2) x 10−4 GeV−1

HT140U / R > 0.45 277 ± 1 GeV (88 ± 2) x 10−4 GeV−1

HT150U / R > 0.45 295 ± 2 GeV (86 ± 2) x 10−4 GeV−1

HT100U / R > 0.50 195 ± 1 GeV (110 ± 2) x 10−4 GeV−1

HT140U / R > 0.50 269 ± 2 GeV (93 ± 2) x 10−4 GeV−1

HT150U / R > 0.50 286 ± 2 GeV (91 ± 2) x 10−4 GeV−1

Table B.16: HT trigger turn-on parameters for simulated tt̄(µ+X)+jets events sat-
isfying the HAD Box requirements for different R cuts and HT thresholds.
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Figure B.8: tt̄(µ+X)+jets emulated HT trigger turn-ons in the HAD Box.
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HT threshold / R cut µ λ

W (τν)+jets
HT100U / R > 0.40 243 ± 2 GeV (105 ± 5) x 10−4 GeV−1

HT140U / R > 0.40 315 ± 3 GeV (98 ± 4) x 10−4 GeV−1

HT150U / R > 0.40 336 ± 3 GeV (90 ± 3) x 10−4 GeV−1

HT100U / R > 0.45 237 ± 2 GeV (108 ± 7) x 10−4 GeV−1

HT140U / R > 0.45 308 ± 3 GeV (98 ± 5) x 10−4 GeV−1

HT150U / R > 0.45 331 ± 4 GeV (86 ± 5) x 10−4 GeV−1

HT100U / R > 0.50 227 ± 3 GeV (124 ± 11) x 10−4 GeV−1

HT140U / R > 0.50 293 ± 4 GeV (108 ± 8) x 10−4 GeV−1

HT150U / R > 0.50 312 ± 5 GeV (96 ± 7) x 10−4 GeV−1

Table B.17: HT trigger turn-on parameters for simulated W (τν)+jets events satisfy-
ing the HAD Box requirements for different R cuts and HT thresholds.
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Figure B.9: W (τν)+jets emulated HT trigger turn-ons in the HAD Box.
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HT threshold / R cut µ λ

Z(νν)+jets
HT100U / R > 0.40 255 ± 2 GeV (104 ± 4) x 10−4 GeV−1

HT140U / R > 0.40 339 ± 3 GeV (98 ± 3) x 10−4 GeV−1

HT150U / R > 0.40 359 ± 3 GeV (93 ± 3) x 10−4 GeV−1

HT100U / R > 0.45 246 ± 2 GeV (118 ± 6) x 10−4 GeV−1

HT140U / R > 0.45 324 ± 3 GeV (113 ± 5) x 10−4 GeV−1

HT150U / R > 0.45 343 ± 3 GeV (106 ± 5) x 10−4 GeV−1

HT100U / R > 0.50 239 ± 2 GeV (132 ± 9) x 10−4 GeV−1

HT140U / R > 0.50 312 ± 3 GeV (122 ± 6) x 10−4 GeV−1

HT150U / R > 0.50 329 ± 4 GeV (113 ± 6) x 10−4 GeV−1

Table B.18: HT trigger turn-on parameters for simulated Z(νν)+jets events satisfying
the HAD Box requirements for different R cuts and HT thresholds.
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Figure B.10: Z(νν)+jets emulated HT trigger turn-ons in the HAD Box.
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B.3 Evaluation of Potential MR Bias from Lepton

Identification

The lepton boxes in this analysis are used to infer the shapes of the MR distribution

of backgrounds to the HAD box. In order for this strategy to be reliable, we must first

demonstrate that lepton identification, for both electrons and muons, does not bias

the shape of a given sample’s MR distribution from, for example, a strong correlation

between the probability of a lepton being successfully identified and the value of MR.

In order to evaluate any potential bias in the distribution of MR from muon

reconstruction or identification we consider simulated W (µν)+jets events and define

a generator level analogue of the MU Box selection. We denote this selection the Aµ

Box; it consists of the requirement that there is at least one generator level muon with

pT > 20 GeV/c and |η| < 2.1, mirroring the kinematic acceptance requirements on

the reconstructed muon in the MU Box selection. With respect to the construction

of the variables R and MR, the same reconstructed quantities are used in the Aµ and

MU* Boxes, factorizing the effects of muon identification and reconstruction. The MR

distribution of W (µν)+jets events, shown in figure B.11, demonstrates that, despite

a difference in the absolute normalization (due to non-unity muon reconstruction and

identification efficiencies), the shapes of the MR distributions for Aµ and MU* Box

selected events are the same. This indicates that muon reconstruction and ID is

uncorrelated with the behavior of these variables.

We also define a generator level analogue to the ELE Box selection, denoted Ae,

which consists of the requirement that there is at least one generator level electron

incident in the ECAL barrel or endcap fiducial region with ET > 20 GeV. The

only difference here in the treatment of the electron, with respect to the ELE Box

approach, is that any reconstructed jets matching the electron are not replaced with

the electron momentum. This is done in order to isolate the effect of the electron

ID from other kinematic effects. Comparing the R2 scaling behavior of MR between

simulated W (eν)+jets events satisfying the ELE selection with those passing the Ae

requirements indicates that the electron reconstruction and ID is uncorrelated with
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Figure B.11: (Left) MR distributions for different R selections for simulated
W (µν)+jets events satisfying the MU box selection. Fits to the exponential part
of the MR distribution are shown as dotted colored lines. (Center) MR distributions
for different R selections for simulated W (µν)+jets events satisfying the generator
level muon acceptance (Aµ) selection. (Right) Value of the exponential slope S from
fits to the MR distribution, as a function of R cut for simulated W (µν)+jets events
satisfying the MU box selection, and independently those that satisfy the Aµ selection.
Here the muons are treated as neutrinos.
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the behavior of R and MR. The exponential fits for these distributions are shown in

figure B.12.
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Figure B.12: (Left) Here, we do not use the reconstructed electron to replace the cor-
responding reconstructed jet in order evaluate any bias in MR introduced by electron
ID. MR distributions for different values of the cut on R for simulated W (eν)+jets
events satisfying the ELE Box selection. Fits to the exponential part of the MR dis-
tribution are shown as dotted colored lines. (Right) Value of the exponential slope
S from fits to the MR distribution, as a function of R cut for simulated W (eν)+jets
events satisfying the ELE Box selection and independently those that satisfy the
generator level electron acceptance (Ae) selection.

B.4 Study of Correlations Between Different R Re-

quirement Fits

The background distribution for MR is described with a set of exponential functions

f(MR) = Ne−iκMR . Each function, associated to a specific background (QCD multi-

jets, W (µν)+jets, etc.) has a different slope parameters κ which we observe to exhibit

MR scaling with the requirement placed on the variable R, Rmin, according to

κ(Rmin) = a+ b ·R2
min. (B.3)
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In the SUSY search, control region measurements at low values of Rmin are used to

measure a and b for different processes in order to predict κ(Rmin) in the signal region

at large values of Rmin. In the fits of κ(Rmin) values measured in control regions used

to measure a and b each point is considered as independent from the others, ignoring

the fact that the fitted samples are correlated (each sample being fully included in all

the samples corresponding to looser values of Rmin). We use a set of toy Monte Carlo

experiments to determine the effect of the neglected correlation on the determination

of a and b for each sample, evaluating whether this procedure incurs a systematic

bias and, if so, how large. For each toy experiment proceed as follows:

• We generate exclusive samples in bins of R. For the range [Ra, Rb] we use

the distribution f(MR) = NRae
−iκaMR − NRbe

−iκbMR , enforcing the relation

κ(Rmin) = atrue + btrueR
2
min and taking the number of events in the MR distri-

bution for each Rmin value from that observed in data. The last bin is generated

inclusively, according to an exponential function.

• The exclusive samples are combined into inclusive samples, equivalent to those

used in the analysis.

• A fit in each sample, according to an exponential function, is performed, to

determine the value of κ(Rmin) in each fit.

• As in the analysis, the values of κ(Rmin) are fitted as if the points were inde-

pendent, determining a and b.

As a result, we obtain a distribution of afit− agen and bfit− bgen. The distribution is

used to quantify the bias on a and b due to neglecting the correlation (the mean of the

distribution) and the systematic error associated to it (the RMS of this distribution).

In Tab. B.19 the results of the toys are summarized.

In principle, the procedure suffers of circularity dependence since the test starts

from the result of the uncorrelated fit in the analysis, which is itself affected by the

bias. As long as the bias is small, this should not result in a significant error. To verify

this, we repeated the set of toy experiments of Tab. B.19, shifting the generated values
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Data Sample BOX atrue btrue afit − agen bfit − bgen
QCD data QCD prescaled box −0.0192 −0.387 −0.0061± 0.0010 −0.024± 0.005
QCD data MU control box −0.0106 −0.117 −0.0005± 0.0006 0.000± 0.005
QCD data ELE control box −0.0208 −0.180 0.0008± 0.0001 −0.016± 0.003
W (µν)+jets MU Box −0.0096 −0.026 0.0008± 0.0007 −0.004± 0.007
W (eν)+jets ELE Box −0.0102 −0.028 0.0001± 0.0022 −0.028± 0.030

Table B.19: Values of afit − agen and bfit − bgen determined from toy Monte Carlo
experiments for each background sample in the analysis. Results are quoted as (mean
value ± RMS) of the distribution.

by minus the bias of the tables. The result obtained in this case is the same as for

Tab. B.19, such that this fit gives, on average, the result we find when the correlations

are neglected. This proves that the bias does not depend on the central value used

in the toy generation in the small, relevant range of a and b we are considered.

B.5 ELE, MU, and HAD Box Background Predic-

tions by Process

Tables B.20, B.21, B.22 show the expected background composition for the three

signal-candidate regions of the ELE, MU and HAD boxes, taking into account all

nonnegligible backgrounds.

Background Process Prediction

W (`ν)+jets 0.31 ± 0.17
tt̄+jets 0.32 ± 0.20

Z(``)+jets 0.001 ± 0.001

Table B.20: Background breakdown for ELE Box background prediction with R >
0.45 and MR > 500 GeV.
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Background Process Prediction

W (`ν)+jets 0.20 ± 0.11
tt̄+jets 0.31 ± 0.19

Z(``)+jets 0.002 ± 0.002

Table B.21: Background breakdown for MU Box background prediction withR > 0.45
and MR > 500 GeV.

Background Process Prediction

W (`ν)+jets 3.2 ± 1.3
tt̄+jets 0.70 ± 0.35

Z(νν)+jets 1.7 ± 0.51

Table B.22: Background break-down for HAD Box background prediction with R >
0.5 and MR > 500 GeV.

B.6 Background Prediction Coverage Tests

For the MU, ELE and HAD Box background predictions, measurements of the shape

and normalization of the MR distribution for different processes is used to calculate

the integral of the MR distribution over each signal region, corresponding to the total

number of expected SM background events. In addition, the input measurements

and assumptions that go into these predictions have associated errors, both system-

atic and statistical in nature, that are propagated to these integrals and background

predictions. In order to check that our procedure for predicting these background

yields is unbiased and that the errors we quote correspond to 68% probability inter-

val, we perform toy Monte Carlo experiments where we repeat the fitting procedure

on trial pseudodata. The procedure for generating and analyzing these toy Monte

Carlo experiments is summarized as follows:

• Perform background estimation with data. This provides the central values for

any parameters included in the background estimation (normalizations, shape

parameters).

• Generate a trial background by randomly generating trial values for any param-

eters with systematic errors. Trial values are drawn from normal distributions
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with central values equal to the values observed in data and standard deviation

equal to the systematic error on the parameter.

• From the trial background calculate the MR integral in the signal region. This

corresponds to the true background yield for the trial.

• From the trial background, generate a trial pseudodata set by drawing bin-by-

bin event yields from Poisson distributions with peak value equal to the integral

of the trial background distribution in each bin.

• Perform the background estimation procedure, treating the trial pseudodata in

the same way as the observed data.

We use the MU Box observed MR yields as an example to test the background

prediction. For each value of the MR/R cut, we generate 100K trial MR background

distributions and repeat the above procedure, arriving at 100K alternate background

predictions. These background predictions correspond to the central value of the true

background, whereas the observed yields are distributed as a Poisson around this

central value. In order to check whether these background predictions are an unbi-

ased estimator of the “true” background, and that the corresponding error on that

prediction covers a 68% probability interval, we compare the predictions with the cor-

responding true values, shown in figure B.13. We do not observe any significant biases

for any MR/R cut values, and in each case the ±1 σ interval covers approximately

68%, which implies the quoted systematic errors have the intended meaning. From

these observations we concluded that the background prediction procedure is unbi-

ased, and that systematic errors on the different parameters entering the background

prediction are correctly propagated to the final prediction.

B.6.1 Compatibility of Predicted and Observed Yield in the

MU Box

Using the same framework as for the coverage tests, we can predict the distribution

of the number of observed events, for a given set of R/MR cuts, in the MU Box. This
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Figure B.13: Background prediction pulls for the MU Box, for different R/MR cut
values. Shown for MR cuts of (top) 400 GeV, (middle) 500 GeV, (bottom) 600 GeV
and R cuts of (left) 0.4, (middle) 0.45, (right) 0.5 .

distribution can then be used to assign probabilities (p-values) to the observations

we have made in the data. These toy MC background predictions contain all of the

elements of the analysis background prediction:

• systematic uncertainties on parameters used to determine the background Pois-

son smearing of the “true” expected yields

• Data-driven normalizations and parameter determination from MR sideband

The resulting distributions of the observed yields, for different MR/R cuts, are

the most accurate predictions of these distributions available within the analysis, such

that toys modeling the systematic error of the background predictions as normal dis-

tributed or log-normal are essentially approximations to this fully-detailed approach.

We use the expected pdf Nobserved distribution and the number of actual observed

events, to calculate the probability of observing an equal or less probable configura-

tion (Z likelihood). The results are shown for different R/MR boxes, inclusive and
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exclusive in MR in figures B.14-B.16. We don’t observe any significant deviations

from expectations.

These tests demonstrate that the configuration of observed event yields in the MU

Box are not that improbable, even though it may not appear to be the case by eye.

These same tests prove that the background prediction procedure is unbiased, and

that the quoted systematic errors mean what they are intended to. Both these points

are inter-consistent; the toys tell us that the Poissonian contribution to these yields,

in the regime we are working at (low expected yields, nontrivial relative systematic

uncertainties) are highly nontrivial and dominate the resulting distribution of ob-

served yields. In the MU Box the largest effect is 1.8σ, corresponds to a nonoptimal

set of cuts.
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Figure B.14: Expected pdf for Nobs, for MU Box selected events with R > 0.4 and
different inclusive MR cuts as indicated.
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Figure B.15: Expected pdf for Nobs, for MU Box selected events with R > 0.45 and
R > 0.5 and different inclusive MR cuts as indicated.
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Figure B.16: Expected pdf for Nobs, for MU Box selected events with R > 0.4,
R > 0.45 and R > 0.5 and different exclusive MR bins as indicated.



414

B.7 MR as a Function of Instantaneous Luminosity

During the course of data taking, the instantaneous luminosity and noise profiles in

different subdetector is changing. In order to evaluate the effect of these variations we

compare the distribution of MR in the QCD control box between different run ranges

and as a function of the number of reconstructed primary vertices, which is indicative

of the instantaneous luminosity. These comparisons are shown in figure B.17. With

the 35 pb−1 data, we observe no significant changes in the shape of the MR distribu-

tion between the different primary datasets used or as a function of the number of

reconstructed primary vertices.
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Figure B.17: (Left) MR distribution for the QCD control box, split into different pri-
mary datasets, and the ratio of each distribution relative to PD JetMET. (Right) MR

distribution for QCD control box, shown as a function of the number of reconstructed
primary vertices. The ratio of each MR distribution to the inclusive distribution is
shown.
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B.8 EWK Processes in the QCD Control Box

The QCD control box provides the opportunity to select an unbiased MR distribution

(w.r.t. and HT trigger), such that in the low MR, QCD-dominated, region we can

measure the evolution of the QCD MR shape as a function of the R cut. Since the

slope of the QCD MR distribution is significantly steeper than for the EWK and top

backgrounds these other backgrounds become relatively larger with increasing MR.

We quantify the presence of non-QCD multi-jet processes in the QCD control

box in order to distinguish between these events and the possibility of an additional

background. To do this, we follow the same procedure as for the hadronic box back-

ground prediction, taking the normalizations from a measurement in the MU Box.

Specifically, we measure the yield in the MU Box for 100 < MR < 250 GeV, requiring

that the HLT DiJetAve15U trigger also fired. This allows us to measure the effect of

any prescales on the HLT DiJetAve15U selected events. This measurement is shown

in figure B.18.
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Figure B.18: MR distribution for the MU Box with R > 0.2 and the additional
requirement that the prescaled HLT DiJetAve15U trigger was fired. The event yields
here are used to estimate the EWK contribution to the QCD control box, which also
includes the HLT DiJetAve15U requirement.

Using these selected MU Box events we measure an effective integrated luminosity

of 67± 31 nb−1. If we assume that the total dataset corresponds to an integrated lumi-
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nosity of 36.1 pb−1 this corresponds to an effective prescale for the HLT DiJetAve15U

trigger path of ∼500±250. This measurement is then used to normalize the EWK

backgrounds in the QCD control box. These background predictions are shown in

figure B.19, for different R cuts.
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Figure B.19: MR distribution for the MU Box with the additional requirement that
the prescaled HLT DiJetAve15U trigger was fired. (Top left) R > 0.2. (Top right)
R > 0.3. (Bottom left) R > 0.4. (Bottom right) R > 0.5. The event yields here are
used to estimate the EWK contribution to the QCD control box, which also includes
the HLT DiJetAve15U requirement.

We find that the combination of a single QCD exponential component with the

EWK and top backgrounds provides a good description of the observed data. Pre-

dicted and observed yields for different values of R/MR cuts are summarized in Ta-

ble B.23.
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R cut /MR cut Predicted BKG Observed

R > 0.2 / MR > 200 GeV 1621 ± 350 1528
R > 0.2 / MR > 300 GeV 56 ± 13 56
R > 0.2 / MR > 400 GeV 3.07 ± 0.81 4
R > 0.3 / MR > 200 GeV 39 ± 9 45
R > 0.3 / MR > 300 GeV 1.87 ± 0.48 1
R > 0.3 / MR > 400 GeV 0.50 ± 0.15 0
R > 0.4 / MR > 200 GeV 2.99 ± 0.74 4
R > 0.4 / MR > 300 GeV 0.56 ± 0.17 0
R > 0.4 / MR > 400 GeV 0.13 ± 0.05 0
R > 0.5 / MR > 200 GeV 0.87 ± 0.24 2
R > 0.5 / MR > 300 GeV 0.14 ± 0.05 0
R > 0.5 / MR > 400 GeV 0.025 ± 0.009 0

Table B.23: Predicted and observed yields for the QCD Control box for different
values of the R/MR cut

B.9 Background Prediction Closure Tests in Sim-

ulated Events

In order to test the background prediction procedure for the different boxes we per-

form closure tests using simulated events. For each box we take the binned MR

distribution predicted from simulated events, normalized to 35 pb−1 of integrated

luminosity using the theoretical (N)LO cross sections for each background process,

respectively. These MR distributions are added together, yielding the MC background

prediction for a given set of R/MR cuts and box requirements. Since the MC back-

ground MR distribution is made up of weighted events, there are cases where single

bins have less than 1 event. In order to ensure that the background prediction pro-

cedure is done in the same way as for data, we take the simulation predicted binned

MR distribution (1 bin / GeV) and set each bin value to a number drawn from a

Poisson distribution centered at the simulation predicted value.

With these simulation pseudo-data sets we then repeat the same background pre-

diction procedure, for each box, as is done for events selected in data. The back-

ground predictions for the MU, ELE and HAD boxes, using simulation pseudo-data,

are shown in figures B.20 and B.21, respectively.
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Figure B.20: (Left) MR distribution for the MU Box for different R cuts from the
background prediction closure test using simulated events. (Right) MR distributions
for the ELE Box from closure tests.
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Figure B.21: MR distribution for the HAD Box for R > 0.5 from the background
prediction closure test.

As is done for data, the normalizations of backgrounds in the hadronic box are

taken from measurements in the MU and ELE boxes. Table B.24 summarizes the

values of these normalizations as measured from the simulation pseudo-data. We find

agreement with the value used to generate the pseudo-data, 35 pb−1.

Box / R cut A` Box
corr

MU Box R > 0.40 34.5 ± 1.2 pb−1

MU Box R > 0.45 34.3 ± 1.6 pb−1

MU Box R > 0.50 35.4 ± 2.2 pb−1

ELE Box R > 0.40 35.1 ± 1.6 pb−1

ELE Box R > 0.45 34.5 ± 1.9 pb−1

ELE Box R > 0.50 35.5 ± 2.4 pb−1

Table B.24: Lepton efficiency-corrected normalizations, A` Box
corr , from MC closure tests

in the lepton boxes (35 pb−1 simulated).

The background predictions for the MU, ELE and HAD boxes, for the simulation

pseudo-data, are summarized in Tables B.25, B.26 and B.27, respectively. In all cases

we observe agreement between the predicted and observed yields.
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R cut /MR cut Predicted BKG Observed

R > 0.40 / MR > 400 GeV 9.9 ± 3.6 9
R > 0.40 / MR > 500 GeV 2.33 ± 1.00 3
R > 0.40 / MR > 600 GeV 0.55 ± 0.28 0
R > 0.45 / MR > 400 GeV 3.25 ± 1.31 2
R > 0.45 / MR > 500 GeV 0.62 ± 0.29 1
R > 0.45 / MR > 600 GeV 0.12 ± 0.07 0
R > 0.50 / MR > 400 GeV 0.89 ± 0.38 1
R > 0.50 / MR > 500 GeV 0.14 ± 0.07 0
R > 0.50 / MR > 600 GeV 0.021 ± 0.011 0

Table B.25: Predicted and observed yields for MU Box from background prediction
closure test.

R cut /MR cut Predicted BKG Observed

R > 0.40 / MR > 400 GeV 9.1 ± 2.9 7
R > 0.40 / MR > 500 GeV 2.08 ± 0.76 2
R > 0.40 / MR > 600 GeV 0.48 ± 0.20 1
R > 0.45 / MR > 400 GeV 2.92 ± 1.10 4
R > 0.45 / MR > 500 GeV 0.55 ± 0.23 0
R > 0.45 / MR > 600 GeV 0.10 ± 0.05 0
R > 0.50 / MR > 400 GeV 0.76 ± 0.38 1
R > 0.50 / MR > 500 GeV 0.12 ± 0.07 0
R > 0.50 / MR > 600 GeV 0.018 ± 0.009 0

Table B.26: Predicted and observed yields for ELE Box from background prediction
closure test.

MR cut cut Predicted Observed

MR > 400 GeV 13.8 ± 3.4 17
MR > 500 GeV 3.15 ± 0.92 4
MR > 600 GeV 0.66 ± 0.21 1

Table B.27: Predicted and observed yields for different MR cuts with R > 0.5 in the
HAD Box from background prediction closure test.
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B.10 Signal Efficiency Maps

B.10.1 CMSSM

Efficiency maps (covering the grid of model points considered in the interpretation of

search results) are included for each step in the analysis selection and for each final

state box.
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Figure B.22: Efficiency of ≥ 2 jet requirement for CMSSM models (tan β = 3, A0 = 0,
sgnµ = +) as a function of the parameters m0 and m1/2. Results are shown for the
(Left) HAD Box, (Center) ELE Box and (Right) MU Box selections.
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Figure B.23: Efficiency of ≥ 2 jet requirement for CMSSM models (tan β = 10,
A0 = 0, sgnµ = +) as a function of the parameters m0 and m1/2. Results are shown
for the (Left) HAD Box, (Center) ELE Box and (Right) MU Box selections.

B.10.2 Simplified Models

Efficiency maps (covering the grid of model points considered in the interpretation of

search results) are included for each step in the analysis selection and for each final

state box.
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Figure B.24: Efficiency of R cut requirement for CMSSM models (tan β = 3, A0 = 0,
sgnµ = +) as a function of the parameters m0 and m1/2. Cut efficiencies are calculated
using events that satisfy the ≥ 2 jet requirement. Results are shown for the (Left)
HAD Box (R > 0.5), (Center) ELE Box (R > 0.45) and (Right) MU Box (R > 0.45)
selections.
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Figure B.25: Efficiency of R cut requirement for CMSSM models (tan β = 10, A0 = 0,
sgnµ = +) as a function of the parameters m0 and m1/2. Cut efficiencies are calculated
using events that satisfy the ≥ 2 jet requirement. Results are shown for the (Left)
HAD Box (R > 0.5), (Center) ELE Box (R > 0.45) and (Right) MU Box (R > 0.45)
selections.

B.11 NLO Factorization and Renormalization Scale

Uncertainties

The systematic uncertainty on signal yields resulting from PDF uncertainties on NLO

cross sections is evaluated, using the final signal region definitions for each box. The

analysis selection is repeated for events normalized using scale “up” and “down” cross

sections where the effective value of αS has been varied up and down by its uncertainty

in these samples, respectively. The percent deviation of the final signal yield for these

two scenarios is used to assess a systematic uncertainty on the signal yield prediction
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Figure B.26: Efficiency of MR > 500 GeV cut requirement for CMSSM models
(tan β = 3, A0 = 0, sgnµ = +) as a function of the parameters m0 and m1/2. Cut
efficiencies are calculated using events that satisfy the R cut requirement. Results are
shown for the (Left) HAD Box (R > 0.5), (Center) ELE Box (R > 0.45) and (Right)
MU Box (R > 0.45) selections.
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Figure B.27: Efficiency of MR > 500 GeV cut requirement for CMSSM models
(tan β = 10, A0 = 0, sgnµ = +) as a function of the parameters m0 and m1/2.
Cut efficiencies are calculated using events that satisfy the R cut requirement. Re-
sults are shown for the (Left) HAD Box (R > 0.5), (Center) ELE Box (R > 0.45)
and (Right) MU Box (R > 0.45) selections.

accounting for these PDF uncertainties.
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Figure B.28: Total razor efficiency for CMSSM models with (tan β = 3, A0 = 0, sgnµ
= +) in the m0-m1/2 plane. The efficiency maps are for the (Left) HAD Box, (Center)
ELE Box and (Right) MU Box selections.
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Figure B.29: Total razor efficiency for CMSSM models with (tan β = 10, A0 = 0,
sgnµ = +) in the m0-m1/2 plane. The efficiency maps are for the (Left) HAD Box,
(Center) ELE Box and (Right) MU Box selections.
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Figure B.30: Efficiency of ≥ 2 jet requirement in the HAD Box, as a function of
LSP and gluino/squark mass. Results are shown for the (Left) di-gluino production
simplified model and (Right) di-squark production simplified model.
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Figure B.31: Efficiency of R > 0.5 cut requirement in the HAD Box, as a function
of LSP and gluino/squark mass. Cut efficiencies are calculated using events that
satisfy the ≥ 2 jet requirement. Results are shown for the (Left) di-gluino production
simplified model and (Right) di-squark production simplified model.
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Figure B.32: Efficiency of MR > 500 GeV cut requirement in the HAD Box, as a
function of LSP and gluino/squark mass. Cut efficiencies are calculated using events
that satisfy the R > 0.5 cut requirement. Results are shown for the (Left) di-gluino
production simplified model and (Right) di-squark production simplified model.
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Figure B.33: Razor efficiency in the HAD Box, as a function of the LSP and
gluino/squark mass. Results are shown for the (Left) di-gluino production simpli-
fied model and (Right) di-squark production simplified model.
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B.11.1 CMSSM
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Figure B.34: NLO factorization and renormalization scale uncertainties on the ex-
pected signal yield in the signal region for CMSSM models (tan β = 3, A0 = 0, sgnµ
= +), as a function of the parameters m0 and m1/2. Results are shown for the (Left)
HAD Box (R > 0.5, MR > 500 GeV), (Center) ELE Box (R > 0.45, MR > 500 GeV)
and (Right) MU Box (R > 0.45, MR > 500 GeV) selections.
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Figure B.35: NLO factorization and renormalization scale uncertainties on the ex-
pected signal yield in the signal region for CMSSM models (tan β = 10, A0 = 0, sgnµ
= +), as a function of the parameters m0 and m1/2. Results are shown for the (Left)
HAD Box (R > 0.5, MR > 500 GeV), (Center) ELE Box (R > 0.45, MR > 500 GeV)
and (Right) MU Box (R > 0.45, MR > 500 GeV) selections.
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Figure B.36: PDF uncertainties on the expected signal yield in the signal region for
CMSSM models (tan β = 3, A0 = 0, sgnµ = +), as a function of the parameters m0

and m1/2. Results are shown for the (Left) HAD Box (R > 0.5, MR > 500 GeV),
(Center) ELE Box (R > 0.45, MR > 500 GeV) and (Right) MU Box (R > 0.45,
MR > 500 GeV) selections.
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B.11.2 Simplified Models
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Figure B.37: PDF uncertainties on the expected signal yield in the signal region for
simplified models. (Left) di-gluino production. (Right) di-squark production. Results
are shown for the HAD Box (R > 0.5, MR > 500 GeV) selection.

The ISR uncertainty is O(1%) except close to the diagonal in the SMS models

where it is up to 10%. We have performed the PDF and ISR scans of the unceratinties

point by point and use them in the final limit.

B.12 JES Uncertainties

The systematic uncertainty on signal yields resulting from jet energy scale (JES) un-

certainties [212] is evaluated, using the final signal region definitions for each box.

These are uncertainties are determined using pT and η dependent JES uncertainty

maps, where each event is considered twice, once where jets’ momentum are system-

atically increased by one standard deviation and then again where they are instead

decreased by the same factor. The analysis selection is repeated for events with these

two treatments, and the percent deviation of the final signal yield from the nominal

JES for these two scenarios is used to assess a systematic uncertainty on the signal

yield prediction accounting for these JES uncertainties.
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B.12.1 CMSSM
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Figure B.38: Systematic uncertainty on the expected signal yield in the signal region
due to JES uncertainties for CMSSM models (tan β = 3, A0 = 0, sgnµ = +), as a
function of the parameters m0 and m1/2. Results are shown for the (Left) HAD Box
(R > 0.5, MR > 500 GeV), (Center) ELE Box (R > 0.45, MR > 500 GeV) and
(Right) MU Box (R > 0.45, MR > 500 GeV) selections.
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B.12.2 Simplified Models

The resulting JES systematic uncertainty on the signal yield, for each simplified model

point, are shown in figure C.49. A flat systematic uncertainty of 1% is assigned to

account for this effect.
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Figure B.39: Systematic uncertainty on the expected signal yield in the signal region
due to JES uncertainties in the HAD Box, as a function of LSP and gluino/squark
mass. Results are shown for the (Left) di-gluino production simplified model and
(Right) di-squark production simplified model.

B.13 Potential Signal Contamination in MR Con-

trol Regions

.

B.13.1 CMSSM

In the background prediction procedure, low and intermediate MR sidebands are used

as control regions. These control regions are used to measure background normaliza-

tions and shapes. Here, we quantify the possibility for signal events to contaminate

these measurements through their presence in these control regions.

In the lepton boxes, an the region 125 GeV < MR < 175 GeV is used to measure
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the normalization of the W + jets background, and this normalization is ultimately

propagated to the other SM backgrouns. This region is dominated by W + jets

production, such that the contamination from other SM backgrounds (Z(``)+jets

and tt̄+jets) are small. Similarly, any potential contribution from CMSSM signal

events is completely negligible, for all of the CMSSM parameter space examined.

The control region that can potentially be polluted with signal events is the in-

termediate MR sideband (200 GeV< MR < 400 GeV) which is used to determine the

normalization of the W+jets 2nd component, in each of the three boxes. In order to

evaluate the possibility of signal contamination in this control region, we calculate

the expected background yield, for each of the 3 boxes and each point in the CMSSM

parameter space considered.

The relevant metric for assessing the impact of this potential signal contamination

is not the absolute expected signal yield in these control regions, but rather the

fractional yield, relative to the expected SM contribution in the same region. In

each of the three boxes, we calculate the expected SM contribution in these control

regions, based on our 35 pb−1 background predictions. We find that we expect {287,

118, 95} events in this control region for the HAD, ELE and MU Boxes, respectively.

The expected signal yields for these three control regions, relative to the expected

SM contribution, are shown in figure B.40 for each of the three boxes and each point

in the CMSSM parameter space considered. The only cases where there is potential

for significant signal contamination is in the CMSSM parameter space that is already

ruled out. We would observe this signal before it the background prediction would

go off.

We observe that the expected fractional signal contamination in the regions of the

CMSSM which this analysis is sensitive to is negligible, relative to the corresponding

uncertainties on the background yields in this region, and as a result does not affect

the background prediction in the high MR region of the HAD, ELE and MU Boxes.

(up to 5% in the HAD box and a couple percent in the lepton boxes).
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Figure B.40: Expected fractional signal contribution to MR control regions for
CMSSM models (tan β = 3, A0 = 0, sgnµ = +), as a function of the parameters
m0 and m1/2. Results are shown for the (Left) HAD Box, (Center) ELE Box and
(Right) MU Box selections.

B.13.2 Simplified Models

.

The relevant discussion here is the same as for the CMSSM signal contamination

and the conclusion is the same. The expected fractional signal contamination in

the HAD box MR sideband is shown in figure B.41 for the di-gluino and di-squark

simplified signal models, and is negligible for the models we are sensitive to.
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Appendix C

Chapter 10 Appendix: Searching
Through Razor Space

C.1 Event Samples

C.1.1 Data Samples

The data sample consists of the events collected by the CMS experiment at
√
s=7

TeV during the Run2011A and Run2011B CMS data-taking period. We consider final

states including 2µ, 1µ1e, 2e, 1µ, 1e and hadronic. The analysis uses three different

Primary Datasets (PDs), HT, MuHad, and ElectronHad, in which the events firing

the dedicated razor triggers are included (see section 10.4.1). A summary of the

datasets used in this analysis is given in Tab. C.1.

In addition to these PDs, control measurements are made on data samples in

May10ReReco dataset corresponding to the Jet, SingleElectron, SingleMuon, Dou-

bleElectron, DoubleMuon and MuEle PDs, which contain events triggered by the

NR11 dataset control triggers described in section 10.4.1.

C.1.2 Simulated Signal and SM Background Samples

Simulated event samples are used in this analysis to characterize the agreement be-

tween data and expectations from simulation (section C.12) and to test the closure

of our background modeling strategy (section C.9). All simulated samples used in

this work are processed with the full CMS detector simulation and standard CMSSW
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Run Range Dataset Name

multi-box razor data samples
165071 - 168437 /ElectronHad/Run2011A-PromptReco-v4/AOD
165071 - 168437 /MuHad/Run2011A-PromptReco-v4/AOD
165071 - 168437 /HT/Run2011A-PromptReco-v4/AOD
170053 - 172619 /ElectronHad/Run2011A-05Aug2011-v1/AOD
170053 - 172619 /MuHad/Run2011A-05Aug2011-v1/AO
170053 - 172619 /HT/Run2011A-05Aug2011-v1/AOD
172620 - 175770 /ElectronHad/Run2011A-PromptReco-v6/AOD
172620 - 175770 /MuHad/Run2011A-PromptReco-v6/AOD
172620 - 175770 /HT/Run2011A-PromptReco-v6/AOD

> 175832 /ElectronHad/Run2011B-PromptReco-v1/AOD
> 175832 /MuHad/Run2011B-PromptReco-v1/AOD
> 175832 /HT/Run2011B-PromptReco-v1/AOD

Table C.1: Summary of 2011 datasets.

reconstruction chain.

The W(→`ν) + n-jets events (` = e, µ, τ), Z(→``) + n-jets events and γ + n-jets

events are produced with Monte Carlo simulation, using theMadGraph v4.22 event

generator, based on a leading-order calculation of the matrix element (ME). ME cal-

culation is performed for final states with at most four primary partons, requiring

that the parton pT exceeds 10 GeV/c. PYTHIA [213] is used for parton showering,

hadronization and the underlying event description. Parton shower matching is ap-

plied to avoid double counting of emissions in overlapping phase space regions. The

MLM [235] matching algorithm with kT. The lepton clustering is used with matching

threshold 15 GeV/c. pair invariant mass is required to be m`` > 50 GeV/c2 at

the generator level. The CTEQ6L1 [236] parton distribution functions are used. The

tt̄ + jets and single top (s-channel, t-channel and tW ) backgrounds are generated

with MadGraph interfaced with PYTHIA with the associated parton pT > 20 GeV/c

and matching threshold 30 GeV/c. Samples are considered from the Summer11 and

Spring11 Monte Carlo productions, as summarized in Tab. C.2.

To generate simulated samples for SUSY signal models the mass spectrum is first

calculated with SOFTSUSY [215] and the decays with SUSYHIT [216]. PYTHIA is then

used with the SLHA interface [217] to generate the events. The generator level cross



436

With Pileup: Processed dataset name is always
/Spring11-PU S1 START311 V1G1-v*/AODSIM

Dataset Description Generator Details cross section (pb)
qq →WW madgraph-tauola 43.0

gg →WW → 2l2ν pythia6 0.153
tt̄ tauola 157.5

single top s-channel madgraph 1.4
single top t-channel madgraph 20.9

tW madgraph 10.6
Z[20-inf] → ee powheg-pythia 1666.0
Z[20-inf] → µµ powheg-pythia 1666.0
Z[20-inf] → ττ powheg-pythia-tauola 1666.0
Z[10-20] → ee powheg-pythia 3892.9
Z[10-20] → µµ powheg-pythia 3892.9
Z[10-20] → ττ powheg-pythia-tauola 3892.9

W/Z+γ madgraph 165.0
W → `ν + jets madgraph-tauola 31314.0
Z[50-inf] + jets madgraph-tauola 3048

WZ pythia6-tauola 18.2
ZZ pythia6-tauola 5.9

QCD di-jets, 50 < HT < 100 GeV madgraph 30 · 106

QCD di-jets, 100 < HT < 250 GeV madgraph 7 · 106

QCD di-jets, 250 < HT < 500 GeV madgraph 171000
QCD di-jets, 500 < HT < 1000 GeV madgraph 5200

QCD di-jets, HT > 1000 GeV madgraph 83
Z→ νν madgraph 4500

Table C.2: Summary of Monte Carlo datasets.

section and the k-factor for the NLO calculation computed using Prospino 2 [228].

C.2 NR11 Control Sample Measurements

The NR11 data set is used to isolate the different SM contributions to the event

yield of each of the final state boxes. Using these control samples, the parameters

describing the MR/R2 shapes of the backgrounds are measured to be used in the fit

region ML fits with the R11 data sample.

During the runs corresponding to the NR11 data set low threshold, inclusive

(w.r.t. requirements on hadronic activity) lepton triggers were deployed which allows

us to perform measurements in a more expansive low-MR/low-R2 region, relative to

the R11 ML fit region. For each isolated SM background, a two-dimensional maxi-

mum likelihood fit is performed modeling the events as two instances of the function
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Fi(MR, R
2) (equation (10.15)), corresponding to the first and second component of

that background and with the total background pdf given by

F TOT
i (MR, R

2) = Ni

[
F 1st
i (MR, R

2) + fiF
2nd
i (MR, R

2)
]
, (C.1)

where the parameter fi describes the relative normalization of the two components

and the functions F 1st and F 2nd each have independent parameters k,M0
R and R2

0.

The selection used to isolate each of the nonnegligible backgrounds (tt̄+jets,

W (`ν)+jets and Z(``)+jets) in each of the boxes is described below, along with

the two-dimensional fits which measure the shape parameters.

C.2.1 W(`ν)+jets in the ELE Box

A control sample for W (`ν)+jets events is defined by combining the ELE Box require-

ments with a veto on the presence of b-tagged jets. The latter requirement reduces the

tt̄+jets contribution to the ELE Box, resulting in a high purity W (`ν)+jets sample.

Events are selected from the DoubleElectron PD of the May10 ReReco data sam-

ple, requiring the OR of HLT Ele8 and HLT Ele17 CaloId CaloIsoVL (both prescaled

triggers). This trigger is fully efficient for events satisfying the offline ELE Box elec-

tron requirements.

 [GeV] (R > 0.2)RM

100 200 300 400 500 600

E
ve

nt
s 

/ 4
0 

G
eV

1

10

210

DATA

SM MC

W+jets

top+X

Z+jets

DiBosons

=7 TeVs
CMS 2011 Preliminary
 

-1 L dt = 209 pb∫ 

 [GeV] (R > 0.4)RM

100 200 300 400 500 600

E
ve

nt
s 

/ 4
0 

G
eV

1

10

210
DATA

SM MC

W+jets

top+X

Z+jets

DiBosons

=7 TeVs
CMS 2011 Preliminary
 

-1 L dt = 209 pb∫ 

Figure C.1: MR distribution for events selected in the ELE Box requiring that the
event has no b-tagged jets, for an R cut of (Left) R > 0.2 (Right) R > 0.4.
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A comparison of the MR distribution for data and simulated background events

satisfying this control sample selection is shown in figure C.1. The simulated back-

grounds are normalized relatively using N vertex event re-weighting for pileup and the-

oretical cross sections. In order to account for data being selected with a prescaled

trigger, the simulated backgrounds are scaled so that the total background prediction

agrees with the data in the largest bin.

Box Sample
W (`ν)+jets 0 b-tagged jets tt̄+jets 0 b-tagged jets Z(``)+jets 0 b-tagged jets

ELE 5825 (91.3%) 428 (6.7%) 112 (1.8%)
MU 4002 (84.8%) 351 (7.4%) 191 (4.1%)

Table C.3: Yields normalized to 1 fb−1 with 0 b-tag requirement and MR > 300 GeV,
R > 0.3 (R2 > 0.09)

Yields estimated from simulated events for the control selection are listed in

Table C.3, indicating that more than 90% of this sample should be comprised of

W (eν)+jets events.
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Figure C.2: 1D projections of a 2D ML fit in MR (Left) and R2 (Right) for W+jets
data control samples in the ELE box. The sample is described by two Fi components.
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C.2.2 W(µν)+jets in the MU Box

A control sample for W (µν)+jets events in the MU box is defined by combining the

MU box requirements with a veto on the presence of b-tagged jets, which significantly

reduces tt̄+jets contamination. Events are selected from the SingleMu PD for May10

ReReco data, requiring HLT IsoMu17 to fire. The muon pT requirement is increased

from 15 to 20 GeV/c in order to be efficient with respect to this trigger and to make

a consistent requirement on simulated events for comparison. Studies of simulated

event shapes as a function of lepton pT requirement indicate that the shape parameters

measured from this control sample are insensitive to this change.
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Figure C.3: MR distribution for events selected in the MU Box (pµT > 20 GeV/c)
requiring that the event has no b-tagged jets, for an R cut of (Left) R > 0.2 (Right)
R > 0.4.

A comparison of the MR distribution for data and simulated background events

satisfying this control sample selection is shown in figure C.3. Yields estimated from

simulated events for the control selection are listed also in Table C.3, quantifying the

purity of this control sample. The two-dimensional ML fit to this control sample is

shown in figure C.2 and the measured shape parameters are listed in Tab. C.6.

C.2.3 Z(``)+jets in the ELE-ELE and MU-MU Boxes

Isolated samples of Z(``)+jets events are selected by combining the ELE-ELE and

MU-MU box requirements with a b-tagged jet veto, respectively. The later require-
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Figure C.4: 1D projections of a 2D ML fit in MR (Left) and R2 (Right) for W+jets
data control samples in the MU box. The sample is described by two Fi components.

ment reduces the tt̄+jets background contribution while maintaining high efficiency

for Z(``)+jets events. Similarly, the invariant mass of the di-lepton system is required

to exceed 60 GeV, further reducing non-Z contributions.
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Figure C.5: MR distribution for events selected in the ELE-ELE box (Left) and MU-
MU box (Right) requiring that the event has no b-tagged jets and satisfies a cut of
R > 0.2.

For the ELE-ELE box, Events are selected from the DoubleElectron PD for May10

ReReco data requiring HLT Ele17 CaloIdL CaloIsoVL Ele8 CaloIdL CaloIsoVL fires.

MU-MU box events are selected by requiring the OR of HLT DoubleMu7 and HLT Mu13 Mu8
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in the DoubleMu PD.

Box Sample
tt̄+jets 0btag W (`ν)+jets 0btag Z(``)+jets 0btag

MU-ELE 231 (54.0%) 103 (24.0%) 94 (21.9%)
MU-MU 169 (18.0%) 300 (32.0%) 469 (50.0%)

ELE-ELE 204 (6.4%) 344 (10.7%) 2651 (82.9%)

Table C.4: Yields are normalized to 1 fb−1. Requirements include M`` > 60 GeV cut,
0 b-tagged jets, MR > 200 GeV and R > 0.2 (R2 > 0.04)

A comparison of the MR distribution for data and simulated background events

satisfying these control sample selections are shown in figure C.5. Yields estimated

from simulated events for the control selections are listed in Table C.4.

C.2.4 tt̄+jets NR11 Control Samples

An isolated sample of tt̄+jets events can be selected in each of the final state boxes by

requiring the presence of at least one b-tagged jet. Tab. C.5 summarizes the expected

event composition in the final state boxes considered for tt̄+jets control samples. An

ELE box sample is not considered since there is not an acceptable trigger available

in the NR11 menu with a high enough event yield.

Box Sample
tt̄+jets ≥ 1 btag W (`ν)+jets ≥ 1 btag Z(``)+jets ≥ 1 btag

MU-ELE 474 (95.6%) 10 (2.1%) 12 (2.3%)
MU-MU 915 (77.6%) 94 (8.0%) 29 (2.5%)

ELE-ELE 468 (81.4%) 29 (5.1%) 77 (13.4%)
MU 4019 (61.1%) 1487 (22.6%) 65 (1.0%)

Table C.5: Yields normalized to 1 fb−1 with ≥ 1 b-tag requirement, MR > 200 GeV,
and R > 0.2 (R2 > 0.04)

A comparison of the MR distribution for data and simulated background events

satisfying these control sample selections are shown in figure C.6 for the ELE-MU,

MU-MU, ELE-ELE and MU boxes, respectively. The SM background simulated

events are normalized using N vertex event re-weighting for pileup and theoretical cross
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sections without trigger requirements. The two-dimensional ML fits to these sam-

ples are shown in figure C.7, with shape parameters from those fits summarized in

Tab. C.8.

C.2.5 Summary of Shape Parameters from NR11 Measure-

ments

The background shape parameters measured from the NR11 data set are summarized

for W (`ν)+jets, Z(``)+jets and tt̄+jets events in Tab. C.6, C.7 and C.8, respectively.

Sample Box First Component
M0
R R2

0 k

W+jets MU -51 ± 40 -0.137 ± 0.029 0.079 ± 0.014
W+jets ELE -21 ± 22 -0.079 ± 0.015 0.150 ± 0.020

Sample Box Second Component
M0
R R2

0 k f

W+jets MU -32 ± 29 -0.216 ± 0.033 0.026 ± 0.003 0.72 ± 0.04
W+jets ELE -37 ± 36 -0.200 ± 0.040 0.033 ± 0.004 0.71 ± 0.04

Table C.6: Fit results for a set of W + jets data control samples (no b-tagged jets).

Sample Box First Component
M0
R R2

0 k

Z+jets MU-MU 116 ± 19 0.000 ± 0.001 0.400 ± 0.030
Z+jets ELE-ELE -324 ± 427 -0.15 ± 0.16 0.11 ± 0.09

Sample Box Second Component
M0
R R2

0 k f

Z+jets MU-MU -164 ± 56 -0.281 ± 0.004 0.021 ± 0.003 0.94 ± 0.06
Z+jets ELE-ELE -140 ± 151 -0.15 ± 0.09 0.05 ± 0.02 1.00 ± 0.11

Table C.7: Fit results for a set of Z+jets data control samples (no b-tagged jets and
mll > 60).
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Figure C.6: MR distribution for events selected requiring ≥ 1 b-tags, for an R cut
of (Left) R > 0.2 and (Right) R > 0.4. (First row) ELE-MU box. (Second row)
MU-MU box. (Third row) ELE-ELE box. (Fourth row) MU box.
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Sample Box First Component
M0
R R2

0 k

tt̄+jets MU -30 ± 44 -0.137 ± 0.035 0.063 ± 0.013
tt̄+jets ELE -44 ± 43 -0.080 ± 0.021 0.073 ± 0.013
tt̄+jets MU-MU 57 ± 72 -0.055 ± 0.047 0.130 ± 0.070
tt̄+jets ELE-ELE 63 ± 47 -0.050 ± 0.020 0.140 ± 0.030
tt̄+jets MU-ELE 63 ± 47 -0.140 ± 0.060 0.060 ± 0.020

Sample Box Second Component
M0
R R2

0 k f

tt̄+jets MU -194 ± 190 -0.310 ± 0.180 0.017 ± 0.004 1.00 ± 0.01
tt̄+jets ELE -40 ± 40 -0.08 ± 0.03 0.017 ± 0.004 0.38 ± 0.08
tt̄+jets MU-MU 48 ± 67 -0.06 ± 0.05 0.018 ± 0.003 0.74 ± 0.10
tt̄+jets ELE-ELE -55 ± 40 -0.04 ± 0.02 0.022 ± 0.004 0.76 ± 0.15
tt̄+jets MU-ELE 66 ± 50 -0.14 ± 0.05 0.012 ± 0.005 0.51 ± 0.22

Table C.8: Fit results for a set of tt̄+jets data control samples (≥ 1 b-tagged jets)
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Figure C.7: 1D projections of a 2D ML fit in MR (Left) and R2 (Right) for tt̄ NR11
control samples. (First row) ELE-MU box. (Second row) MU-MU box. (Third row)
ELE-ELE box. (Fourth row) MU box.
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C.3 Study of Residual QCD Background

Without heavy bosons decaying to neutrinos, QCD multijet events have no intrinsic

source of high momentum weakly interacting particles. This results in these events

having naturally small values of R and an MR distribution which falls more quickly

than other SM backgrounds with increasing values of R.

The di-lepton boxes have negligible contributions from QCD multijet events due

to both suppression from MR/R2 minimum requirements and the need to have two

reconstructed and high quality leptons. For the other boxes, it is expected for some

multijet events to appear at low-MR/low-R2. In order to estimate this contribution

test are performed for each of the boxes with two parts:

• Using control samples from data, measure the shape of QCD multijet back-

grounds

• Repeat the 2D background model fits including an additional multijet back-

ground component, and test whether its shape is consistent with event yields

observed in data

At low MR and R2 the vast majority of events correspond to QCD multijet back-

ground because the large relative production cross section. In order to isolate a

QCD multijet sample events are selected in this phase-space (which is not accessi-

ble using the higher-threshold razor triggers) by applying requirements on prescaled,

low-threshold jet and lepton triggers.

From the NR11 data sample, which is independent of the sample used in the final

background model fits, multijet control samples are defined for each of the HAD, MU

and ELE boxes.

HAD box multijet sample

The QCD multijet control sample for the HAD box is defined by combining the

HAD box selection with prescaled jet trigger requirements, with thresholds low enough

to give an unbiased MR distributions to low values, where the expected contribution
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from non-multijet events is negligible. We consider two samples: a low-statistics

sample selecting events by requiring that both HLT Jet30 and HLT DiJet30 fire and

a larger statistics sample (with less available MR phase-space due to higher thresh-

olds) which requires the OR of HLT Jet30, HLT DiJet30, HLT Jet60, HLT DiJet60,

HLT Jet80 and HLT DiJet80. For each of these triggers, the number indicates the

minimum jet pT required at the HLT to fire the trigger, with “DiJet” referring to the

average of the two hardest jets.

ELE and MU box multijet samples

In order to select a sample of multijet events in lepton final states we alter the ELE

and MU box requirements by inverting the lepton isolation criteria when identifying

those leptons. This selects a sample composed predominantly of non-isolated leptons

coming from hadronic decays within jets which, at low-MR/low-R, is consistent with

a pure QCD multijet sample. Multi-jet ELE and MU events are selected from the

DoubleEle and SingleMu PDs, respectively, using the same triggers as for the NR11

measurements described in section C.2.

The 2D ML fits to each of these samples are shown in figure C.8, where each

sample is modeled as a single instance of the function Fj(MR, R
2) (equation (10.15)).

The shape parameters measured from these fits are summarized in Tab. C.9.

Sample M0
R [GeV] R2

0 k [GeV−1]
Multi-jet HAD box (HLT DiJetAve30) 3± 8 −0.046± 0.003 0.269± 0.014
Multi-jet HAD box (HLT DiJetAve80) 6± 3 −0.043± 0.001 0.271± 0.004

Multi-jet ELE Box −190± 90 −0.14± 0.05 0.11± 0.03
Multi-jet MU Box −1200± 600 −1± 1 0.017± 0.009

Table C.9: Example fit results for data events selected by the HAD box selection for
the QCD control box, for two different choices of the HLT requirement. The data is
modeled as a single-component 2D pdf.

Background components with the multijet shapes measured from control samples

are added to the background model for fits in the HAD, ELE and MU boxes with the
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Figure C.8: Projection of the 2D ML fits results on MR (Left) and R2 (Right) com-
pared with data samples resulting from multijet control selections. Figures correspond
to the HAD (Top), ELE (Center), and MU (Bottom) boxes, with the corresponding
trigger requirements.

inclusive data sample. The yield parameter corresponding to the multijet background

from each of these fits is given in Tab. C.10. We observe that the fits prefer negligible
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multijet yields, indicating that any potential multijet contamination is small and

adequately described by the other components of the background model.

Box NQCD

HAD -70 ± -40
MU -10 ± -100
ELE -10 ± 40

Table C.10: Fit results for the yield of the QCD background in the HAD, MU, ELE
boxes
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C.4 High-Statistics Simulated tt̄ Shape Study

In order to study the robustness of the two dimensional background model we consider

a high-statistics sample of simulated tt̄+jets events, corresponding to an integrated

luminosity of 10 ab−1, about 2000 times larger than the data set collected from 2011

collisions. With this high-statistics sample a number of tests are performed:

• Test the background model to a greater precision than possible with 2011 data

sets.

• Test to which extent the second (flatter) component, which is included in the

UEC for the background model, is stable across boxes (noting that this fact is

not enforced as an assumption in the analysis)

• Quantify the impact of a pT -dependence of the b-tagging discriminant by com-

paring background shapes between inclusive and b-tagged subsamples

• Quantify the agreement between simulated events and data for tt̄+jets final

states

Two-dimensional ML fits are performed on the full 10 ab−1 simulated tt̄+jets

sample in each of the six final state boxes. Each of these fits models the sample with

two instances of Fj(MR, R
2) (Eq. 10.15), a first and second component. The latter is

part of the UEC component which combines the contributions of the similar tt̄+jets

and V+jets second components for the background model used in the analysis. The

fits are performed in the full razor plane for both inclusive event samples and the

subsample with at least one b-tagged jet.

The inclusive HAD box simulated event sample, with projections of the ML fit

result, are shown in figure C.9. We observe that the 2D background model gives

an excellent description of the data sample in the razor plane, over many decades

of data. This background model agreement, with comparable results for each of

the selections considered, indicates that the 2D background model should provide

an adequate description of SM backgrounds selected in collision events for samples

significantly larger than the 4.7 fb−1 sample considered for this analysis.
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tt̄+jets events satisfying the HAD box selection. Blue line indicates the central value
of the 2D ML fit to this sample with the background model for tt̄+jets, projected
onto each variable. Fits are performed in the full razor plane region.

The shape parameters for each of the boxes, as determined by ML fits, are sum-

marized in Tab. C.11. From these results, two conclusions can be drawn. Firstly, a

comparison of the shape parameters for a singe box between the inclusive and b-tagged

samples indicates that the values are consistent. This implies that the b-tagged jet

requirement does not significantly change the shape the razor variables. Secondly,

comparing the the shape parameters between different boxes we observe that they

are very similar, with the second component consistent throughout the boxes, with

small numerical differences resulting from the difference in the treatment of electrons

and muons when constructing the variables, particularly for k.
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HAD box

Parameter 1st Component 2nd Component
Inclusive ≥ 1 b-tagged Inclusive ≥ 1 b-tagged

M0
R -61 ± 37 -91 ± 23 -53 ± 27 -69 ± 18

R2
0 -0.164 ± 0.028 -0.171 ± 0.017 -0.231 ± 0.016 -0.228 ± 0.012
k 0.0366 ± 0.0037 0.0349 ± 0.0020 0.0155 ± 0.0004 0.0152 ± 0.0004

MU box

Parameter 1st Component 2nd Component
Inclusive ≥ 1 b-tagged Inclusive ≥ 1 b-tagged

M0
R 53 ± 24 52 ± 26 -21 ± 17 8 ± 18

R2
0 -0.108 ± 0.021 -0.102 ± 0.022 -0.264 ± 0.016 -0.261 ± 0.017
k 0.0495 ± 0.0041 0.0501 ± 0.0045 0.0179 ± 0.0006 0.0178 ± 0.0006

ELE box

Parameter 1st Component 2nd Component
Inclusive ≥ 1 b-tagged Inclusive ≥ 1 b-tagged

M0
R -140 ± 32 -121 ± 31 -55 ± 21 -55 ± 20

R2
0 -0.154 ± 0.020 -0.159 ± 0.020 -0.220 ± 0.017 -0.229 ± 0.015
k 0.0349 ± 0.0025 0.0360 ± 0.0025 0.0161 ± 0.0007 0.0165 ± 0.0006

ELE-ELE box

Parameter 1st Component 2nd Component
Inclusive ≥ 1 b-tagged Inclusive ≥ 1 b-tagged

M0
R -58 ± 38 -72 ± 34 -35 ± 22 -20 ± 23

R2
0 -0.138 ± 0.026 -0.131 ± 0.025 -0.239 ± 0.029 -0.268 ± 0.030
k 0.0413 ± 0.0041 0.0404 ± 0.0037 0.0144 ± 0.0014 0.0133 ± 0.0012

ELE-MU box

Parameter 1st Component 2nd Component
Inclusive ≥ 1 b-tagged Inclusive ≥ 1 b-tagged

M0
R -34 ± 43 -49 ± 35 -30 ± 21 -34 ± 22

R2
0 -0.108 ± 0.028 -0.106 ± 0.028 -0.247 ± 0.022 -0.246 ± 0.025
k 0.0516 ± 0.0063 0.0499 ± 0.0065 0.0197 ± 0.0012 0.0193 ± 0.0014

MU-MU box

Parameter 1st Component 2nd Component
Inclusive ≥ 1 b-tagged Inclusive ≥ 1 b-tagged

M0
R -14 ± 36 -23 ± 38 -20 ± 20 -29 ± 20

R2
0 -0.110 ± 0.026 -0.117 ± 0.027 -0.256 ± 0.019 -0.243 ± 0.019
k 0.0429 ± 0.0046 0.0434 ± 0.0047 0.0164 ± 0.0007 0.0166 ± 0.0008

Table C.11: Comparison of fit output for the the inclusive and b-tagged simulated
event samples for each of the boxes. Fits are performed on the full R2 vs. MR plane
after the box requirements are applied.
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The shape parameters of the HAD box measured from the b-tagged simulated

sample are compared with the shapes measured from b-tagged jet data in Tab. C.12.

The sample from data has contamination from W+jets events, which generally has

a different first component shape than tt̄+jets. The second components are modeled

with one UEC, which is in agreement with the shape derived from the simulated event

sample.

1st Component
Parameter ≥ 1 b-tagged data ≥ 1 b-tagged simulation

M0
R -89 ± 146 -91 ± 23

R2
0 -0.097 ± 0.083 -0.171 ± 0.017
k 0.050 ± 0.0016 0.0349 ± 0.0020

2nd Component
Parameter ≥ 1 b-tagged data ≥ 1 b-tagged simulation

M0
R -35 ± 22 -69 ± 18

R2
0 -0.239 ± 0.029 -0.228 ± 0.012
k 0.0144 ± 0.0014 0.0152 ± 0.0004

Table C.12: Comparison of fit parameters for the the b-tagged event sample in the
HAD box for data and simulated tt̄+jets events. Fits for simulated events are per-
formed on the full R2 vs. MR plane after the box requirements are applied, while fits
to data are constrained to the fit region.
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C.5 Evaluation of MR Dependence on Lepton Iden-

tification

In order to perform the background extrapolation described in section 10.6 we must

ensure that the shapes of the razor variables for SM backgrounds are not significantly

biased by our lepton identification. To estimate the size of any potential bias, we

consider simulated event samples of tt̄+jets and W+jets with electrons and muons

fromW decays. We define a truth level lepton identification, where we require that the

electrons and muons have momentum and direction within the phase-space acceptance

cuts of our offline reconstruction algorithms. By comparing the MR shapes of these

truth selected events with the subset of events that are identified by our offline lepton

reconstruction algorithms, we can isolate any potential bias of the MR distribution

due solely to lepton identification. The MR distributions for these simulated events,

for different identification requirements, are shown in figures C.10 and C.11 for muons

and electrons, respectively.
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Figure C.10: MR distribution for simulated events with different muon identification
requirements applied. (Left) tt̄+ jets events with truth level muon phase-space re-
quirements. (Right) W (µν)+jets events. Lower plots show ratio of event yield for
different identifications with respect to total truth sample.
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Figure C.11: MR distribution for simulated events with different electron identifica-
tion requirements applied. (Left) tt̄+ jets events with truth level electron phase-space
requirements. (Right) W (eν)+jets events.

The ratios of shapes in these figures indicate that there is some dependence of the

shape of the MR distribution on lepton identification requirements. We observe that

this dependence is strongest at low MR (below the range considered for this analysis)

and that in the relevant MR range the bias is a few percent over an interval where

the background yields decrease by more than two orders of magnitude. We conclude

that any potential bias due to lepton identification is negligible.
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C.6 Pile-up Dependence of Kinematic Observables

The instantaneous luminosity of LHC collisions within CMS varied during 2011 data-

taking, meaning that the number of interactions in each bunch crossing could range

from a few to tens. In order to ensure that the shapes of razor variables MR and

R2 for SM backgrounds and potential signals are stable throughout this period, we

evaluate the dependence of the MR and R2 distributions on the observed number of

vertices, both on data and simulated events. The ratios of the MR (R2) distributions

for different number of vertices are shown in figure C.12 (C.13).

As demonstrated by these figures, the shape of the kinematic variables is stable

for different running conditions, once the pile-up corrections to the jets and lepton

isolation variables are applied. Analogous figures for the subset of events with at

least one b-tagged jet are shown in figures C.14 and C.15. The stability of the MR

and R2 shapes despite changing numbers of interactions, with and without a b-tagged

jet requirement, indicates that the b-tagging efficiency is also sufficiently stable over

changing run conditions for the purposes of this analysis.

It is also necessary to ensure that our electron identification algorithms are stable

under changing run conditions. The electron selection efficiency as a function of

the number of reconstructed primary vertices, integrated in pT and η for barrel-

only, endcap-only, and all the electrons is shown in figure C.16 for Z(ee) events

selected in 2011 data. The efficiency is determined using a tag-and-probe technique

(see section 6.1). In these figures we observe that PU energy subtraction applied to

electron isolation criteria reduces the dependence of the selection efficiency on the PU

conditions to within a few %. The same conclusions applies to the case of muons, for

which the isolation variables and the PU subtraction being computed and applied in

the same way.
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Figure C.12: Distribution of MR in different bins of the number of vertices, for W +
jets (Top left), tt̄ (Top right), and SUSY LM6 (Bottom left) simulated samples, and
for data in the HAD box (Bottom right). On the bottom part of each plot, the ratio
of each distribution to the inclusive distribution is also shown.
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Figure C.13: Distribution of R2 in different bins of the number of vertices, for W+jets
(Top left), tt̄ (Top right), and SUSY LM6 (Bottom left) Monte Carlo samples, and
for data in the HAD box (Bottom right). A baseline selection (mR > 200 GeV)
is applied. On the bottom part of each plot, the ratio of each distribution to the
inclusive distribution is also shown.
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Figure C.14: Distribution of MR in different bins of the number of vertices, for W +
jets (Top left), tt̄ (Top right), and SUSY LM6 (Bottom left) Monte Carlo samples,
and for data in the HAD box (Bottom right). A baseline selection (R > 0.2) is
applied. On the bottom part of each plot, the ratio of each distribution to the
inclusive distribution is also shown.

C.7 Shape Dependence of Fit Region Variations

The trigger turn-on curves for the razor triggers, presented in section 10.4.1, indicate

that events through the razor plane are efficiently selected. At low MR, there are
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Figure C.15: Distribution of R2 in different bins of the number of vertices, for W+jets
(Top left), tt̄ (Top right), and SUSY LM6 (Bottom left) Monte Carlo samples, and
for data in the HAD box (Bottom right). A baseline selection (MR > 300 GeV)
is applied. On the bottom part of each plot, the ratio of each distribution to the
inclusive distribution is also shown.

small inefficiencies which do not enter in the signal sensitive region but potentially

do at the smallest MR part of the fit region. In order to test for any potential shape

bias resulting from these inefficiencies we repeat the ML fits for the HAD, MU and

ELE, in both the inclusive and b-tagged analysis, varying the lower MR bound of the
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Figure C.16: Electron identification efficiency as a function of the number of recon-
structed vertices in Z(ee) events selected from 2011 data. Efficiencies are determined
using a tag-and-probe fit to the di-electron invariant mass distribution. The efficiency
is integrated in pT and shown separately for barrel-only (Top), endcap-only (Center),
and total acceptance (Bottom).

fit region by 50 and 100 GeV.

Inefficiencies of the razor triggers at small values of MR could bias the fit region

ML fit performed in each of the boxes. The shape parameters measured in these fits

are summarized in Tab. C.13. We observe that the shape parameters are consistent

between the fits with varying MR lower bounds for each box, indicating that there is

no resolvable bias introduced in the fits from trigger inefficiencies.

C.8 Systematic Uncertainties from Choice of Back-

ground Function

In order to quantify the systematic error associated to our choice of background func-

tion, F (MR, R
2), we consider a more general function, FSY S(MR, R

2) which deviates

from exponentially falling behavior. FSY S(MR, R
2) can be expressed as

FSY S(MR, R
2) =

[
b(MR −M0

R)1/n(R2 −R2
0)1/n − n

]
e−b(MR−M0

R)1/n(R2−R2
0)1/n

, (C.2)

where the added parameter n changes the functional dependence on the razor vari-

ables. How the function changes can be understood in terms of the one dimensional

projections of MR and R2. Integrating out each variable, independently, above some
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HAD box (inclusive)
Parameter Nominal +50 GeV + 100 GeV

M0
R 19± 24 43± 26 41± 27

R2
0 −0.258± 0.024 −0.271± 0.030 −0.276± 0.026
k 0.0169± 0.0016 0.0137± 0.0032 0.0136± 0.0032

MU box (inclusive)
Parameter Nominal +50 GeV + 100 GeV

M0
R 104± 29 49± 30 100± 51

R2
0 −0.275± 0.028 −0.281± 0.027 −0.281± 0.026
k 0.0188± 0.0020 0.0178± 0.0022 0.0182± 0.0019

ELE box (inclusive)
Parameter Nominal +50 GeV + 100 GeV

M0
R 43± 28 37± 30 41± 27

R2
0 −0.274± 0.027 −0.269± 0.029 −0.271± 0.030
k 0.0138± 0.0030 0.0105± 0.0047 0.0112± 0.0050

HAD box (b-tagged)
Parameter Nominal +50 GeV + 100 GeV

M0
R −7± 23 −2± 23 −2± 23

R2
0 −0.294± 0.030 −0.302± 0.030 −0.300± 0.030
k 0.0123± 0.00296 0.0122± 0.0036 0.0110± 0.0038

MU box (b-tagged)
Parameter Nominal +50 GeV + 100 GeV

M0
R −1± 23 −2± 23 −4± 23

R2
0 −0.304± 0.030 −0.305± 0.029 −0.303± 0.030
k 0.0137± 0.0050 0.0163± 0.0050 0.0144± 0.0074

ELE box (b-tagged)
Parameter Nominal +50 GeV + 100 GeV

M0
R −2± 23 −1± 23 −1± 23

R2
0 −0.301± 0.030 −0.303± 0.030 −0.304± 0.030
k 0.0126± 0.0050 0.0128± 0.0053 0.0137± 0.0051

Table C.13: Determination of the UEC parameters in the HAD, MU and ELE boxes,
for the inclusive and b-tagged data samples. Different baseline cuts on MR are con-
sidered and the fits are repeated, giving new shape parameters.

cut value yields one dimensional functions

∫∞
R2

cut
FSY S(MR, R

2)dR2 ∼ e−kMR (MR−M0
R)1/n

, (C.3)

∫∞
Mcut
R
FSY S(MR, R

2)dMR ∼ e−kR2 (R2−R2
0)1/n

, (C.4)
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where

kMR
= k0

MR
+ k(R2

cut)
1/n , (C.5)

kR2 = k0
R2 + k(M cut

R )1/n , (C.6)

with R2
cut and M cut

R indicating the lower bounds for integrating over the two variables,

respectively. We observe that the addition of the parameter n results in bending of

the one dimensional functional forms, with the deviation from an exponential slope

progressively increasing with larger MR and R2 values.

We consider potential deviations from exponential behavior as a possible system-

atic uncertainty and, using instances of the function FSY S, evaluate the magnitude

of this uncertainty as follows:

• For each box, the functional form of the UEC component (which is the only

relevant component over the majority of the razor plane in each box) is replaced

with the new function FSY S(MR, R
2). The fit in the fit region of each box is

repeated with the nominal configuration, except now floating n. From this fit

we determine nfit ± σn.

• A range of n variations from one is defined by considering the largest examples

of |nfit−1| and σn, building an interval [nmin, nmax] which reflects the preference

of the data.

• The fit is repeated in the fit region of each box, now fixing n to nmin and nmax

in independent fits. The background models corresponding to these fits are

considered as alternative background models which include potential systematic

variations due to deviations from exponential behavior.

• The signal sensitive region of the razor plane is partitioned into a collection of

subregions, and the yield prediction is calculated for each background model in

each subregion.

The fit result with n floated in the HAD box is shown in figure C.17. We see that
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Figure C.17: Projection of the fit result on the MR (Top) and R2 (Bottom) axis for
the HAD Box, where a background model is used with a floating n parameter and
function FSY S for the ELE-like UEC.
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the extrapolation of the fit over the full razor plane is in agreement with observed

event yields and with the nominal fit. We observe nfit = 0.96±0.04, which motivates

the choice of nmax = 1.04 and nmin = 0.96 for building our alternative background

models.

Each alternative background model is used to determine a prediction of the ex-

pected yield in an array of subregions of the razor plane. The background predictions

for each of the subregions for each of the alternative background models is summa-

rized in Tab. C.14 for the HAD box. We observe that systematic differences between

the predictions from each background model considered are small, negligible relative

to the other uncertainties included in the background model. The same conclusion

follows from the analogous results from each box, indicating that this systematic can

be safely ignored in the analysis.

C.9 Background Prediction Closure Tests for Sim-

ulated Events

In order to test the closure of the background prediction method we repeat the exercise

on a cocktail of simulated SM background events. Due to the different effective

integrated luminosities between simulated samples, each process is weighted so that

its total yield matches that expected for 4.7 fb−1, assuming NLO theoretical cross

sections. This cocktail is used to generate a pseudodata sample on which the analysis

can be repeated.

The closure test procedure follows several steps:

• The weighted SM background simulated event cocktail is used to create a 2D

background template in MR/R2 for each box. A random data set of events is

drawn from each boxes’s template, resulting in a pseudodata sample.

• The ML fit procedure is applied to the pseudodataset and the background

model, with associated errors, is determined for the signal sensitive region of

the razor plane .
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SubRegion (SR) n = 1 n = nmin n = nmax n floated
HAD SR1,1 1558.2± 69.0 1527.3± 108.8 1509.0± 111.0 1510.8± 126.2
HAD SR1,2 2898.4± 79.9 2887.5± 88.9 2868.4± 97.9 2865.9± 99.2
HAD SR1,3 710.8± 35.0 728.9± 45.0 713.5± 43.2 726.4± 49.3
HAD SR1,4 328.5± 36.5 337.7± 31.1 328.1± 31.5 336.9± 33.6
HAD SR2,1 1785.2± 63.6 1786.7± 74.9 1758.6± 68.9 1774.3± 67.1
HAD SR2,2 3301.3± 82.0 3335.8± 103.5 3313.3± 111.5 3348.5± 117.9
HAD SR2,3 944.6± 45.7 957.0± 46.7 956.7± 47.1 964.0± 48.1
HAD SR2,4 432.2± 36.1 422.5± 35.1 453.8± 37.3 424.1± 37.5
HAD SR3,1 251.0± 26.0 262.7± 27.7 258.7± 30.6 259.7± 29.1
HAD SR3,2 536.8± 46.6 543.5± 45.4 561.0± 49.7 550.0± 48.9
HAD SR3,3 172.9± 36.1 156.6± 28.7 181.6± 32.9 161.8± 34.1
HAD SR3,4 57.9± 18.0 51.5± 16.8 66.2± 18.7 50.5± 17.8
HAD SR4,1 38.5± 8.7 37.4± 10.6 43.1± 9.2 37.7± 8.9
HAD SR4,2 86.4± 22.7 73.7± 17.1 90.0± 24.3 75.6± 20.8
HAD SR4,3 19.5± 7.4 14.3± 5.7 21.7± 9.0 14.4± 7.0
HAD SR4,4 4.2± 2.9 2.7± 2.3 4.9± 3.1 2.4± 2.4
HAD SR5,1 4.7± 2.8 3.9± 2.5 5.3± 3.1 4.1± 2.9
HAD SR5,2 8.3± 4.7 6.0± 3.7 9.5± 4.7 5.9± 4.0
HAD SR5,3 1.2± 1.2 0.8± 0.8 1.5± 1.5 0.8± 0.8
HAD SR5,4 0.4± 0.4 0.4± 0.4 0.5± 0.5 0.4± 0.4
HAD SR6,1 0.8± 0.8 0.6± 0.6 0.9± 0.9 0.6± 0.6
HAD SR6,2 1.0± 1.0 0.7± 0.7 1.2± 1.2 0.8± 0.8
HAD SR6,3 0.4± 0.4 0.3± 0.3 0.4± 0.4 0.4± 0.4

Table C.14: Background yield predictions for different subregions of the razor plane
from several alternative background models.

• The background model is used to estimate the distribution of expected yields in

subregions of the signal sensitive razor plane. These predictions are compared

with the yields of the original weighted template to test for closure.

This entire procedure is completed for both the inclusive analysis and b-tagged jet

subsample analysis.

The one-dimensional projections in MR and R2 of the 2D ML fits to the pseudo-

datasets in each box are shown for the inclusive analysis in figures C.18 and C.19,

respectively. The p-values corresponding to the resulting background prediction in

the signal regions of each box are given in figure C.20 and summarized in figure C.21.

The procedure successfully closes, correctly predicting the shape and yield of the



467

pseudodata sample in the signal regions. Analogous results for the b-tagged analy-

sis closure test are presented in figures C.18-C.21, and also indicate closure of the

method.

 [GeV]RM
400 450 500 550 600 650 700 750 800 850 900

1

10

210

 [GeV]RM
300 400 500 600 700 800 900 1000

1

10

210

310

 [GeV]RM
300 400 500 600 700 800 900 1000

1

10

210

310

 [GeV]RM
300 350 400 450 500 550 600 650

1

10

 [GeV]RM
300 350 400 450 500 550 600 650

1

10

210

 [GeV]RM
300 350 400 450 500 550 600 650

1

10

Figure C.18: Projection of the 2D ML fit on MR for the pseudodata sample in the
fit region for the HAD (Top left), MU (Top right), ELE (Center left), ELE-MU
(Center right), MU-MU (Bottom left) and ELE-ELE (Bottom right) boxes. Inclusive
pseudodata used. Different colors correspond to different background components.
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Figure C.19: Projection of the 2D ML fit on R2 for the pseudodata sample in the
fit region for the HAD (Top left), MU (Top right), ELE (Center left), ELE-MU
(Center right), MU-MU (Bottom left) and ELE-ELE (Bottom right) boxes. Inclusive
pseudodata used. Different colors correspond to different background components.
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Figure C.20: P-values for the yields in the signal regions of each box relative to
the closure test background prediction for the HAD (Top left), MU (Top right), ELE
(Center left), ELE-MU (Center right), MU-MU (Bottom left) and ELE-ELE (Bottom
right) boxes. Inclusive pseudodata used.
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Figure C.21: P -values for the non-empty signal regions from the background closure
test for the inclusive analysis.
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Figure C.22: P -values for the non-empty signal regions from the background closure
test for the b-tagged jet analysis.
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Figure C.23: Projection of the 2D ML fit on MR for the pseudodata sample in the
fit region for the HAD (Top left), MU (Top right), ELE (Center left), ELE-MU
(Center right), MU-MU (Bottom left) and ELE-ELE (Bottom right) boxes. b-tagged
jet pseudodata used. Different colors correspond to different background components.



472

2R
0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

10

210

2R
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

10

210

2R
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

10

210

2R
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

10

2R
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

10

2R
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

10

Figure C.24: Projection of the 2D ML fit on R2 for the pseudodata sample in the
fit region for the HAD (Top left), MU (Top right), ELE (Center left), ELE-MU
(Center right), MU-MU (Bottom left) and ELE-ELE (Bottom right) boxes. b-tagged
jet pseudodata used. Different colors correspond to different background components.
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Figure C.25: P-values for the yields in the signal regions of each box relative to
the closure test background prediction for the HAD (Top left), MU (Top right), ELE
(Center left), ELE-MU (Center right), MU-MU (Bottom left) and ELE-ELE (Bottom
right) boxes. b-tagged jet pseudodata used.
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C.10 Additional Information on Background Fits

C.10.1 Inclusive Data Sample
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Figure C.26: 1D projections of 2D ML fits in MR (Left) and R2 (Right). Samples
correspond to the inclusive MU (Top), ELE (middle) and HAD (Bottom) boxes. The
total background prediction is indicated in blue. The yellow contour corresponds
to the UEC component combined with the first tt̄ component. The V+jets first
component contribution is indicated in red. For the HAD box, the second UEC
component (MU-like) contribution is shown in green. Uncertainty bands on each
contribution only include statistical fluctuations, not systematic uncertainties on the
function parameters.
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Figure C.27: 1D projections of 2D ML fits in MR (Left) and R2 (Right). Samples cor-
respond to the inclusive MU-MU (Top), ELE-MU (middle) and ELE-ELE (Bottom)
boxes. The total background prediction is indicated in blue. The yellow contour cor-
responds to the UEC component combined with the first tt̄ component. The V+jets
first component contribution is indicated in magenta. The ELE-MU box is modeled
without a V+jets contribution. Uncertainty bands on each contribution only include
statistical fluctuations, not systematic uncertainties on the function parameters.
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Figure C.28: Bin-by-bin difference between the number of observed data events and
the integral of the background model for the fit region (Left) and the full razor plane
(Right). Samples correspond to the inclusive MU (Top), ELE (middle) and HAD
(Bottom) boxes. Difference is in absolute number of events.
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Figure C.29: Bin-by-bin difference between the number of observed data events and
the integral of the background model for the fit region (Left) and the full razor plane
(Right). Samples correspond to the inclusive MU-MU (Top), ELE-MU (middle) and
ELE-ELE (Bottom) boxes. Difference is in absolute number of events.
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C.10.2 b-tagged Data Sample
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Figure C.30: 1D projections of 2D ML fits in MR (Left) and R2 (Right). Sam-
ples correspond to the b-tagged MU-MU (Top), ELE-MU (middle) and ELE-ELE
(Bottom) boxes. The total background prediction is indicated in blue. The yellow
contour corresponds to the UEC component while the first tt̄ component is indicated
in red. Uncertainty bands on each contribution only include statistical fluctuations,
not systematic uncertainties on the function parameters.
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Figure C.31: 1D projections of 2D ML fits in MR (Left) and R2 (Right). Samples cor-
respond to the b-tagged MU-MU (Top), ELE-MU (middle) and ELE-ELE (Bottom)
boxes. The total background prediction is indicated in blue, including an effective first
component and UEC. Uncertainty bands on each contribution only include statistical
fluctuations, not systematic uncertainties on the function parameters.
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Figure C.32: Bin-by-bin difference between the number of observed data events and
the integral of the background model for the fit region (Left) and the full razor plane
(Right). Samples correspond to the b-tagged MU (Top), ELE (middle) and HAD
(Bottom) boxes. Difference is in absolute number of events.
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Figure C.33: Bin-by-bin difference between the number of observed data events and
the integral of the background model for the fit region (Left) and the full razor plane
(Right). Samples correspond to the b-tagged MU-MU (Top), ELE-MU (middle) and
ELE-ELE (Bottom) boxes. Difference is in absolute number of events.
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C.11 Fit Parameters

MU Box

component / parameter k [GeV−1] M0
R [GeV] R2

0

tt̄+jets 1st component 0.061 ± 0.009 100 ± 30 -0.08 ± 0.03
W (`ν)/Z(``)+jets 1st component 0.081 ± 0.010 280 ± 30 -0.14 ± 0.02

UEC 2nd component 0.019 ± 0.002 40 ± 30 -0.27 ± 0.02

ELE Box

component / parameter k [GeV−1] M0
R [GeV] R2

0

tt̄+jets 1st component 0.44 ± 0.007 80 ± 20 -0.13 ± 0.03
W (`ν)/Z(``)+jets 1st component 0.067 ± 0.014 -100 ± 70 -0.17 ± 0.05

UEC 2nd component 0.014± 0.003 430 ± 30 -0.27 ± 0.03

MU-MU Box

component / parameter k [GeV−1] M0
R [GeV] R2

0

tt̄+jets 1st component 0.40 ± 0.015 -460 ± 80 -0.09 ± 0.06
W (`ν)/Z(``)+jets 1st component 0.078 ± 0.016 60 ± 20 -0.05 ± 0.03

UEC 2nd component 0.018± 0.002 400 ± 30 -0.27 ± 0.03

ELE-ELE Box

component / parameter k [GeV−1] M0
R [GeV] R2

0

tt̄+jets 1st component 0.60 ± 0.014 -80 ± 80 -0.09 ± 0.05
W (`ν)/Z(``)+jets 1st component 0.02 ± 0.01 -20 ± 20 -0.03 ± 0.02

UEC 2nd component 0.014± 0.003 430 ± 30 -0.27 ± 0.02

ELE-MU Box

component / parameter k [GeV−1] M0
R [GeV] R2

0

tt̄+jets 1st component 0.56 ± 0.008 10 ± 40 -0.14 ± 0.03
UEC 2nd component 0.019 ± 0.002 430 ± 30 -0.28 ± 0.03

HAD Box

component / parameter k [GeV−1] M0
R [GeV] R2

0

effective 1st component 0.056 ± 0.007 -60 ± 50 -0.09 ± 0.03
UEC MU-like component 0.019± 0.002 370 ± 30 -0.27 ± 0.03
UEC ELE-like component 0.017± 0.002 20 ± 20 -0.26 ± 0.03

Table C.15: ML fit region shape parameters for all of the boxes
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C.12 Comparison of MR and R2 Distributions Be-

tween Data and Simulation

The distribution of the data in each box to the prediction from the Monte Carlo

simulation, normalized to a luminosity of 4.6 fb−1 are presented in figures C.34-C.37.

The inclusive (w.r.t. b-tagging requirements) event sample is shown in figures C.34

and C.35 for MR and R2, respectively, while the analogous plots for the subsample

with at least one b-tagged jet are included in figures C.36 and C.37. The details of

the simulation of these SM backgrounds can be found in section C.1.

While the normalization is as expected not well predicted, the shape is found in

reasonable agreement. The disagreement at low R2 and low MR is due to the (not

modeled) turn-on effects of the razor triggers. It is noted that the analysis does not

depend on these simulated shapes. The agreement on the shapes in the region far from

the trigger turn-on supports our understanding of the 2D R2 vs. MR distribution.
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Figure C.34: Data/simulated event comparisons of the MR distribution in the HAD
(Top left), MU (Top right), ELE (center left), ELE-ELE (center right), MU-MU
(Bottom left) and MU-ELE (Bottom right) boxes. A baseline selection requirement
of R2 > 0.11 (R2 > 0.18) is applied to the leptonic boxes (HAD box).
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Figure C.35: Data/simulated event comparisons for the R2 distribution in the Had
(Top left), MU (Top right), ELE (center left), ELE-ELE (center right), MU-MU
(Bottom left) and MU-ELE (Bottom right) boxes. A baseline selection requirement
MR > 300 GeV (MR > 400 GeV) is applied to the leptonic boxes (HAD box).
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Figure C.36: Data/simulated event comparisons of the MR distribution in the HAD
(Top left), MU (Top right), ELE (Center left), ELE-ELE (Center right), MU-MU
(Bottom left) and MU-ELE (Bottom right) boxes. A baseline selection requirement
of R2 > 0.11 (R2 > 0.18) is applied to the leptonic boxes (HAD box). Events are
required to have at least one b-tagged jet.



487

 > 400 GeV)
R

 (M2R
0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ b
in

1

10

210

310

410
DATA
SM MC
multijets
W+jets
top+X
Z+jets

DiBosons

=7 TeVs
CMS Preliminary
 

-1 L dt = 4.6 fb∫ 

 > 400 GeV)
R

 (M2R
0.2 0.25 0.3 0.35 0.4 0.45 0.5R

(D
A

TA
/M

C
)

0.5

1

1.5

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ b
in

1

10

210

DATA

SM MC

W+jets

top+X

Z+jets

DiBosons

=7 TeVs
CMS Preliminary
 

-1 L dt = 4.6 fb∫ 

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5R

(D
A

TA
/M

C
)

0
0.5

1
1.5

2
2.5

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ b
in

1

10

210

310

410
DATA

SM MC

W+jets

top+X

Z+jets

DiBosons

=7 TeVs
CMS Preliminary
 

-1 L dt = 4.6 fb∫ 

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5R

(D
A

TA
/M

C
)

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ b
in

1

10

210
DATA

SM MC

W+jets

top+X

Z+jets

DiBosons

=7 TeVs
CMS Preliminary
 

-1 L dt = 4.6 fb∫ 

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5R

(D
A

TA
/M

C
)

0
0.5

1
1.5

2

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ b
in

1

10

210 DATA

SM MC

W+jets

top+X

Z+jets

DiBosons

=7 TeVs
CMS Preliminary
 

-1 L dt = 4.6 fb∫ 

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5R

(D
A

TA
/M

C
)

0
0.5

1
1.5

2

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ve

nt
s 

/ b
in

1

10

210

310

410
DATA

SM MC

W+jets

top+X

Z+jets

DiBosons

=7 TeVs
CMS Preliminary
 

-1 L dt = 4.6 fb∫ 

 > 300 GeV)
R

 (M2R
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5R

(D
A

TA
/M

C
)

0.4
0.6
0.8

1
1.2
1.4

Figure C.37: Data/simulated event comparison for the R2 distribution in the HAD
(Top left), MU (Top right), ELE (Center left), ELE-ELE (Center right), MU-MU
(Bottom left) and MU-ELE (Bottom right) boxes. A baseline selection requirement
MR > 300 GeV (MR > 400 GeV) is applied to the leptonic boxes (HAD box). Events
are required to have at least one b-tagged jet.
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C.13 Calculation of PDF Uncertainties for Signal

Models

The systematic uncertainty on signal yields for hypothetical SUSY models is esti-

mated by comparing three different PDF sets with the default used in sample genera-

tion, CTEQ6L1 PDF. For each PDF set, an uncertainty is obtained by evaluating the

uncertainty of sub PDF sets. The uncertainty contribution for each of the alternative

PDFs considered is calculated in a different way.

The cross section for an alternative PDF set is estimated by multiplying the

nominal reference cross section by a weighting factor, R, calculated as

R =
1

N

N∑

i=1

wi(x1, x2, Q) , (C.7)

where N is the number of events in the generated sample. The weight wi(x1, x2, Q)

of the event i for a given PDF set is calculated from the formula

wi(x1, x2, Q) =
f

(P )
1 (x1, Q)× f (P )

2 (x2, Q)

f
(ref)
1 (x1, Q)× f (ref)

2 (x2, Q)
, (C.8)

where

• P is the alternative PDF being considered, MSTW2008, CTEQ6.6 or MRST2007.lomod,

• ref corresponds to the nominal PDF set, CTEQ6L1,

• xj = Bjorken x for parton j (j = 1, 2),

• Q is the factorization scale,

• f (J)
i (xj, Q) = PDF value for the jth parton and PDF set J.

The systematic uncertainty on the expected signal yield attributed to PDFs is calcu-

lated from the variations in R between the different alternative PDF set.

The CTEQ group [230] has developed a method in order to provide the error

associated with the estimation of each of the free parameters describing PDF sets.
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Additional information can be extracted from the χ2 derivatives, in particular the

Hessian matrix can give an estimation of the uncertainties coming from the error on

the parameters estimation. In order to have independent errors the Hessian matrix is

diagonalized and a new set of parameters is computed in this new orthogonal basis.

The up-down variations of the new parameters are then computed by independently

varying them in this new basis and calculating the relative ∆χ2 variation. The main

PDF groups (CTEQ, MRST, MSTW. . . ) work in this basis to provide the central

values of the d parameters describing the PDF and 2d parameter variations.

C.13.1 CTEQ6.6 PDF

The CTEQ6.6 PDF [230] set consists of 45 subsets, one central set and 22 sets where

the eigenvector values have been varied around their best fit values. These values are

varied to fall into the 90% CL. The uncertainty obtained with this set is rescaled by

a factor of 1.645 to approximate the band corresponding to the desired 68% CL. The

symmetric deviation of 22 sets from central value of αs=0.118 are calculated using

the following relation,

(∆RPDF )±,CL90 =
1

2

√√√√
22∑

i=1

(R+
i −R−i )2 . (C.9)

C.13.2 MSTW2008 PDF

The MSTW PDF sets [163] (including NLO and NNLO sets) consists of 41 subsets,

one central set and 20 sets where the eigenvector values have been varied around

their best fit values. The asymmetric deviations of 20 sets from central value can be

evaluated with the “modified tolerance method”:

∆X+
max =

√√√√
N∑

i=1

[max(X+
i −X0, X

−
i −X0, 0)]2 , (C.10)
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∆X−max =

√√√√
N∑

i=1

[max(X0 −X+
i , X0 −X−i , 0)]2 . (C.11)

C.13.3 PDF Weight Technique

Since often it is not possible to generate the desired simulated event sample many

times in order to obtain the uncertainty on an observable due to the PDF set, the

most commonly used method is the one of the ’PDF weights’. This method consists

of assigning, for each event generated with the central PDF from the set, a PDF

weight

W 0
n = 1,W i

n =
f(x1, Q;Si)f(x2, Q;Si)

f(x1, Q;S0)f(x2, Q;S0)
, (C.12)

where n = 1...Nevents, i = 1...NPDF and Si indicates the PDF set. These weights

can be calculated for multiple PDF sets in single simulated events, permitting a

rudimentary re-weighting of the sample to correspond to a different PDF than the

one used to generate it.
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C.14 SUSY Signal Models for Results Interpreta-

tion

Several different SUSY model scenarios are considered in the interpretation of the

search results.

CMSSM

A scan of benchmark scenarios for the CMSSM model with varying values m1/2

vs m0 and with tan β = 10, A0 = 0 and positive µ.

Simplified models (SMS)

A collection of simplified models which each include only one sparticle production

and decay topology with only two sparticles in the SUSY spectrum, for a variety

of values for the masses of these sparticles. The SMS models for which results are

presented are illustrated in figure C.38 and described below:

T1 T2 T1bbbb
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Figure C.38: SMS models considered in this analysis, with accompanying labels.

• T1: Di-gluino production, with each gluino undergoing a three-body decay to

two light quarks and a neutralino.
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• T2: Di-squark production, with each squark decaying to a light quark and a

neutralino.

• T1bbbb: Di-gluino production, with each gluino undergoing a three-body de-

cay to two b-quarks and a neutralino.

• T2bb: Di-sbottom production, with each sbottom decaying to a b-quark and a

neutralino.

• T1tttt: Di-gluino production, with each gluino undergoing a three-body decay

to two top quarks and a neutralino.

• T2tt: Di-stop production, with each stop decaying to a top quark and a neu-

tralino.
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C.14.1 Selection Efficiencies for Signal Models

C.14.1.1 CMSSM
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Figure C.39: Signal selection efficiency across the m1/2 vs m0 plane in the CMSSM for
the sum of the six inclusive analysis boxes (Top left), the Had box alone (Top right),
the ELE box (Middle left), the MU box (Middle right), the ELE-ELE box (Bottom
left) and the MU-MU box (Bottom right). The efficiency is computed with respect
to an inclusive sample of simulated events for a given CMSSM point and it includes
the events populating the signal regions of the six boxes. Despite the fact that the
CMSSM favors the hadronic final state, by adding the leptonic boxes an important
fraction of events is recovered, particularly due to looser fit region definitions.
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C.14.1.2 Simplified Models
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Figure C.40: Signal selection efficiency for SMS T1 in the inclusive analysis for all
of the six boxes (Left) and the HAD box (Right). In this model, gluinos (q̃) are
pair-produced and decay into two light quark jet sand a neutralino (χ̃). Efficiency
contours closely follow contours of M∆ = [m2

g̃ −m2
q̃]/2mg̃ due to its correspondence

with MR and the minimum requirements on that variable in the definition of the
signal regions.
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Figure C.41: Signal selection efficiency for SMS T2 in the inclusive analysis for all of
the six boxes (Left) and the HAD box (Right). In this model, gluinos (q̃) are pair-
produced and decay into a light quark jet and a neutralino (χ̃). Efficiency contours
closely follow contours of M∆ = [m2

q̃ −m2
q̃]/2mg̃ due to its correspondence with MR

and the minimum requirements on that variable in the definition of the signal regions.
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Figure C.42: Signal selection efficiency for SMS T1bbbb in the b-tagged jet analysis
for all of the six boxes (Top left), HAD box (Top right), MU box (Bottom left) and
MU-MU box (Bottom right). In this model, gluinos are pair-produced and decay into
two b-quarks and a neutralino. An abundance of b-tagged jets in these events results
in many non-isolated muons coming from b-quark decays which satisfy the MU-MU
box loose second muon requirement.
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Figure C.43: Signal selection efficiency for SMS T2bb in the b-tagged jet analysis
for all of the six boxes (Top left), HAD box (Top right), MU box (Bottom left) and
MU-MU box (Bottom right). In this model, sbottoms are pair-produced and each
decay into a b-quark and a neutralino. An abundance of b-tagged jets in these events
results in many non-isolated muons coming from b-quark decays which satisfy the
MU-MU box loose second muon requirement.
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Figure C.44: Signal selection efficiency for SMS T1tttt in the inclusive jet analysis
for all of the six boxes (Top left), the HAD box (Top right), the ELE box (Middle
left), the MU box (Middle right), the MU-MU box (Bottom left) and the ELE-ELE
box (Bottom right). In this model, gluinos are pair-produced and decay into two top
quarks and a neutralino. The many tops in the final state of these events each decays
to a W boson, whose leptonic decays can produce multiple leptons in the final state.
Here, the box classification scheme enhances the sensitivity to this model.
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Figure C.45: Signal selection efficiency for SMS T1tttt in the b-tagged jet analysis
for all of the six boxes (Top left), the HAD box (Top right), the ELE box (Middle
left), the MU box (Middle right), the MU-MU box (Bottom left) and the ELE-ELE
box (Bottom right). The many tops in the final state of these events each decays to
a W boson, whose leptonic decays can produce multiple leptons in the final state.
Here, the box classification scheme enhances the sensitivity to this model. Each top
also decays to a b-quark, meaning that the b-tagged jet requirement will be almost
completely efficient for these events, while rejecting backgrounds with fewer sources
of b-quarks.
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Figure C.46: Signal selection efficiency for SMS T2tt in the inclusive jet analysis for
all of the six boxes (Top left), the HAD box (Top right), the ELE box (Middle left),
the MU box (Middle right), the MU-MU box (Bottom left) and the ELE-ELE box
(Bottom right). In this model, stops are pair-produced and decay into a top quark
and a neutralino. The many two tops in the final state of these events each decays to
a W boson, whose leptonic decays can result in di-leptonic final states. An abundance
of b-quarks results in many non-isolated muons from semi-leptonic b-decays.
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Figure C.47: Signal selection efficiency for SMS T2tt in the b-tagged jet analysis for
all of the six boxes (Top left), the HAD box (Top right), the ELE box (Middle left),
the MU box (Middle right), the MU-MU box (Bottom left) and the ELE-ELE box
(Bottom right). The many two tops in the final state of these events each decays
to a W boson, whose leptonic decays can result in di-leptonic final states. Each top
also decays to a b-quark, meaning that the b-tagged jet requirement will be almost
completely efficient for these events, while rejecting backgrounds with fewer sources
of b-quarks.
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C.14.2 Systematic Uncertainties for Signal Models

C.14.2.1 CMSSM

The size of the JES correction as well as the error associated to the model cross

section (not included in the limit as a systematic) are shown in figure C.48. The JES

correction error is particularly small in this analysis, due to the loose jet thresholds

used with respect to the typical jet pT at large MR.
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Figure C.48: (Left) Magnitude of JES systematic uncertainty on CMSSM model event
yields in inclusive analysis signal regions. This is calculated by reconsidering each
event with the jets’ momenta and measured MET adjusted up and down according
to jet-by-jet uncertainties. Total uncertainty represents the maximum changes in
signal selection efficiency as a result of these variations; white indicates a negligible
change. (Right) Magnitude of uncertainty on yields in signal sensitive regions from
NLO cross section uncertainties.
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C.14.2.2 Simplified Models
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Figure C.49: Magnitude of JES systematic uncertainty on SMS model event yields in
inclusive analysis signal regions. (Top left) model T1, (Top right) model T2, (Middle
left) model T1bbbb, (Middle right) model T2bb, (Bottom left) model T1tttt and
(Bottom left) model T2tt. Uncertainty is calculated by reconsidering each event with
the jets’ momenta and measured MET adjusted up and down according to jet-by-jet
uncertainties. Total uncertainty represents the maximum changes in signal selection
efficiency as a result of these variations; white indicates a negligible change.
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Figure C.50: Evaluation of SMS model selection efficiency sensitivity to modeling
of ISR. The selection efficiency is compared between events generated with different
variations of ISR magnitude parameters. The ratio of these efficiencies for models
left to right and top to bottom: T1, T2, T1bbbb, T2bb, T1tttt (inclusive analysis),
T1tttt (b-tagged analysis), T2tt (inclusive analysis) and T2tt (b-tagged) analysis).
Cross section upper limits are not quoted if ratio of efficiencies is below 0.75.
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C.14.3 Evaluation of Potential Signal Contamination in Fit

Region

C.14.3.1 CMSSM
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Figure C.51: If too many signal events are selected in the fit regions of the various
boxes, they could potentially bias the SM background shape and yield estimation
performed through fits. In order to quantify the size of any potential bias, we consider
the magnitude of expected contamination for each of the boxes for CMSSM models,
using expected signal model cross sections. The size of this signal event contamination
is shown for the HAD box (Top left), the ELE box (Top right), the MU box (Top
right), the ELE-ELE box (Bottom left), the MU-MU box (Bottom center) and the
ELE-MU box (Bottom right). White spaces indicate precent contamination is smaller
than axis interval. The expected contamination is observed to be negligible in the
region of parameter space near the observed limit. The lower m1/2/m0 region is
excluded from previous searches (see chapter 10).
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C.14.3.2 Simplified Models
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Figure C.52: Magnitude of expected signal contamination in the fit region for SMS
models T2 (Left) and T1 (Right), expressed as a percent w.r.t. the number of ob-
served events in the fit region in data, per pb of signal cross section. White spaces
indicate precent contamination is smaller than axis interval. For cross sections near
the observed upper limits for these models (fractions of a pb at maximum) the po-
tential signal contamination is negligible.
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Figure C.53: Magnitude of expected signal contamination in the fit region for SMS
model T1tttt analyzed with the inclusive analysis, expressed as a percent w.r.t. the
number of observed events in the fit region in data, per pb of signal cross section,
for the HAD (Top left) ELE (Top right), MU (Center left), ELE-ELE (Center right),
ELE-MU (Bottom left), and MU-ME (Bottom right) boxes. White spaces indicate
precent contamination is smaller than axis interval. For cross sections near the ob-
served upper limits for these models (fractions of a pb at maximum) the potential
signal contamination is negligible.
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Figure C.54: Magnitude of expected signal contamination in the fit region for the
SMS model T2tt, expressed as a percent w.r.t. the number of observed events in
the fit region in inclusive analysis data, per pb of signal cross section, for the HAD
(Top left) ELE (Top right), MU (Center left), ELE-ELE (Center right), ELE-MU
(Bottom left), and MU-ME (Bottom right) boxes. White spaces indicate precent
contamination is smaller than axis interval. For cross sections near the observed
upper limits for these models (fractions of a pb at maximum) the potential signal
contamination is negligible.
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